Université Paris-Saclay

PERCOLATION Exercises

Exercise 1. Let T be a Bienaymé-Galton-Watson tree with offspring distribution Poisson(λ), for some $\lambda > 1$. Let r be its root.

1. Express the probability $\theta(\lambda)$ that T is **infinite**, by giving an implicit equation satisfied by $\theta(\lambda)$. The results of the course can be used without a proof.

Let $p \in (0, 1)$, we consider Bernoulli bond percolation with parameter p on T. We denote by $\theta(\lambda, p)$ the probability that the cluster of r for this percolation configuration on T is **infinite**.

- 2. For which values of p do we have $\theta(\lambda, p) = 0$? We define p_c as the supremum of these values; compute p_c .
- 3. Give an implicit expression for $\theta(\lambda, p)$ when $p > p_c$.
- 4. Show that as $p \to p_c^+$, we have

$$\theta(\lambda, p) = c_{\lambda}(p - p_c) + o(p - p_c).$$

and compute the constant c_{λ} .

Exercise 2. Let G = (V, E) be a (simple, infinite, countable, locally finite, connected) graph. Let $p \in (0, 1)$. We consider **site** percolation on G: let $\xi = (\xi_v)_{v \in V}$ be i.i.d Bernoulli(p) random variables; we denote by $\mathbb{P}_p^{\text{site}}$ this probability measure on $\{0, 1\}^V$.

For $v_0 \in V$, the notation $v_0 \leftrightarrow \infty$ stands for the event that there exists an infinite path $(v_0, v_1, ...)$ of pairwise different vertices such that

$$\forall i \in \mathbb{N}, \xi(v_i) = 1 \text{ and } \{v_i v_{i+1}\} \in E.$$

1. Quickly recall an argument of the course to show that

$$\theta_v^{\text{site}}(p) := \mathbb{P}_p^{\text{site}}(v \leftrightarrow \infty)$$

is increasing in p.

We define $p_c^{\text{site}} := \inf\{p \in (0,1) \mid \theta_v^{\text{site}}(p) > 0\}.$

2. Recall why this definition of p_c^{site} is independent of $v \in V$.

We also consider the usual bond percolation on G, and denote by $\mathbb{P}_p^{\text{bond}}, \theta_v^{\text{bond}}(p), p_c^{\text{bond}}$ the objects from the course. Our goal is to compare p_c^{site} with p_c^{bond} .

We consider the following algorithm. Suppose that $\xi \in \{0, 1\}^V$ is given. Then the following will construct a configuration $\omega \in \{0, 1\}^E$. We fix an order $V = \{v_1, v_2, \dots\}$.

- (i) Let V_0, W_0 be two subsets of V, initially empty.
- (ii) if $\xi(v_1) = 0$, go to step (iv). Otherwise, let $V_1 = \{v_1\}, W_1 = \emptyset$.

- (iii) suppose that V_k, W_k are constructed, then let n be the smallest index of a vertex v_n in $V \setminus (V_k \cup W_k)$ that has a neighbour in V_k . If it does not exist, go to step (iv). Otherwise, let v'_m be its neighbour of smallest index in V_k , and let $e = \{v_n v'_m\} \in E$.
 - if $\xi(v_n) = 1$, set $\omega(e) = 1$ and add v_n to V_k .
 - if $\xi(v_n) = 0$, set $\omega(e) = 0$ and add v_n to W_k .

Let V_{k+1}, W_{k+1} be these new subsets of V.

- (iv) Complete ω on all edges where it is not defined, with independent Bernoulli(p) random variables.
 - 3. Run the algorithm (up to the last occurrence of step (iii)) on the following example, where the order of vertices is given, and a black (resp. white) vertex means that $\xi(v) = 1$ (resp. 0):

4. Using this algorithm, show that for any $v \in V$ and $p \in (0, 1)$,

$$\theta_v^{\text{site}}(p) \le \theta_v^{\text{bond}}(p).$$

- 5. Deduce that $p_c^{\text{site}} \ge p_c^{\text{bond}}$.
- 6. (*) Using similar ideas, show that if the maximal degree d in G is finite, we have $p_c^{\text{site}} \leq 1 (1 p_c^{\text{bond}})^{d-1}$.

Exercise 3. We consider bond percolation on \mathbb{Z}^d . Show that for any S finite containing 0 and any $A \cap S = \emptyset$,

$$\mathbb{P}_p[0\longleftrightarrow A] \le p \sum_{\{x,y\}\in E \text{ s.t. } x\in S \text{ and } y\notin S} \mathbb{P}_p[0 \xleftarrow{S} x] \mathbb{P}_p[y\longleftrightarrow A]$$

in two different ways (first using the BK inequality, then by conditioning on the cluster of 0 in S).

Exercise 4. We consider bond percolation on \mathbb{Z}^2 . Let $A_{n,k}$ be the event that there exists k distinct paths that cross the square $[0, n]^2$ vertically. Show that

$$\mathbb{P}_p[A_{n,k}] \le \mathbb{P}_p[A_{n,1}]^k$$

in two different ways (first using the BK inequality, then by induction and conditioning on the subset of vertices that are connected by open edges to the left boundary of $[0, n]^2$).

Exercise 5. Let n be odd, and let G = (V, E) be a graph with n edges. Let B_n be the event that there are more open edges than closed edges.

- 1. Describe the event that $e \in E$ is pivotal.
- 2. Show that

$$\mathbb{P}_p[\operatorname{Piv}_e(A_n)] = \binom{2n}{n} p^n (1-p)^n.$$

3. Show that $n\binom{2n}{n} \sim 2^{2n-1}/\sqrt{\pi n}$ as $n \to \infty$. Deduce that

$$\frac{d}{dp}\mathbb{P}_p[A_n] \ge c\sqrt{n}[p(1-p)/4]^n.$$

Give the aspect of the function $p \mapsto \mathbb{P}_p[A_n]$ for higher and higher values of n.