PERCOLATION

Exam 2

3 exercises; 4 pages

Exercise 1 (Strict convexity). Throughout this exercise, we consider bond percolation on \mathbb{Z}^{d} with $d \in \mathbb{Z}_{\geq 2}$ and fixed percolation parameter $p \in\left(0, p_{c}\right)$.

1. Define rigorously the correlation length $L(p)$, and show that it is well-defined and lies in $(0, \infty)$. You may use the following results from the course provided that they are clearly stated: the Harris inequality and exponential decay of the cluster size in the subcritical regime.
2. Prove that the map

$$
m_{p}: \mathbb{Z}^{d} \times \mathbb{Z}^{d} \rightarrow[0, \infty),(a, b) \mapsto-\log \mathbb{P}_{p}(a \longleftrightarrow b)
$$

is a metric which is $(-\log p)$-Lipschitz in each coordinate.
The remainder of this exercise is hard. For any $a \in \mathbb{R}^{d}$, define $\lfloor a\rfloor:=\left(\left\lfloor a_{1}\right\rfloor, \ldots,\left\lfloor a_{d}\right\rfloor\right) \in \mathbb{Z}^{d}$. By arguing as in the first part of this exercise and using the Lipschitz property, it is not hard to see that

$$
\|\cdot\|_{p}: \mathbb{R}^{d} \rightarrow[0, \infty), a \mapsto \lim _{n \rightarrow \infty} \frac{1}{n} m_{p}(0,\lfloor n a\rfloor)
$$

defines a norm on \mathbb{R}^{d}. You do not need to prove this. The unit ball of $\|\cdot\|_{p}$ is known to be strictly convex. In the remainder of this exercise, you should assume this result. For any $x^{1}, \ldots, x^{k} \in \mathbb{R}^{d}$, let $A_{n}\left(x^{1}, \ldots, x^{k}\right)$ denote the event that $\left\lfloor n x^{1}\right\rfloor, \ldots,\left\lfloor n x^{k}\right\rfloor$ belong to the same connected component.
3. Fix $x, y, z \in \mathbb{Z}^{d}$. Prove that

$$
\mathbb{P}_{p}\left(A_{n}(x, y, z) \mid A_{n}(x, y)\right)
$$

decays exponentially fast in n if and only if z is not contained in the line segment from x to y. In other words, if and only if $z \notin[x, y]:=\{x+\lambda(y-x): \lambda \in[0,1]\}$. Note: the if and only if has two directions both of which are awarded points. You may use any result from the course provided it is clearly stated.
4. Let $B_{\varepsilon} \subset \mathbb{R}^{d}$ denote the Euclidean ball of radius $\varepsilon>0$ centred at the origin. Describe, using a simple argument (there is no need to go into technical details), how the previous part of the exercise implies that

$$
\mathbb{P}_{p}\left(C_{\lfloor n x\rfloor} \subset n\left([x, y]+B_{\varepsilon}\right) \mid A_{n}(x, y)\right)
$$

tends to one exponentially fast in n for any fixed $\varepsilon>0$. Here C_{a} denotes the connected component of a.

Thus, the last part proves that the conditional shape of $C_{\lfloor n x\rfloor} / n$ looks like an almost straight line segment from x to y.

Exercise 2 (Bond percolation on the triangular and hexagonal lattices). The aim of this problem is to compute the critical probability for bond percolation on the triangular lattice \mathbb{T} and on the hexagonal lattice \mathbb{H}. We denote by $\mathbb{P}_{p}^{\mathbb{T}}, \theta_{\mathbb{T}}(p)$ and $p_{c}(\mathbb{T})\left(\right.$ resp. $\mathbb{P}_{p}^{\mathbb{H}}, \theta_{\mathbb{H}}(p)$ and $p_{c}(\mathbb{H})$) the usual objects on these graphs. On both these graphs you can use the following facts without a proof:

- Let C be the cluster of 0 . If $p<p_{c}$, then there exists a $c>0$ such that $\mathbb{P}_{p}(|C|>$ $n) \leq \exp (-c n)$.
- If $p>p_{c}$, then a.s. there exists a unique infinite connected component.
- The Harris inequality, square-root trick, and BK inequality.

We label the vertices of \mathbb{T} by elements of \mathbb{Z}^{2} as in Figure 1, and we consider the region $\Lambda_{n} \subset \mathbb{T}$ with vertices labeled by $[0, n-1]^{2}$ and all bonds between them. We also consider its dual $\Lambda_{n}^{*} \subset \mathbb{H}$ as in Figure 1. We denote by \mathcal{A}_{n} the event that Λ_{n} has a left-right crossing.

Figure 1: The subset $\Lambda_{4} \subset \mathbb{T}$ and its dual $\Lambda_{4}^{*} \subset \mathbb{H}($ dotted $)$

1. Show that if $p<p_{c}(\mathbb{T})$, then $\mathbb{P}_{p}^{\mathbb{T}}\left(\mathcal{A}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Deduce that $1-p \geq p_{C}(\mathbb{H})$.

We introduce a local modification of \mathbb{T}, denoted by \mathbb{T}^{\prime}, obtained by transforming a single triangle $\{u, v, w\}$ of \mathbb{T} into a vertex x with three edges, as in Figure 2.

Figure 2: The modified graph \mathbb{T}^{\prime}. Some of the bond probabilities are shown.
2. Show that if $p \in(0,1)$ satisfies $p^{3}=3 p-1$, then there exists a coupling between percolations on \mathbb{T} and \mathbb{T}^{\prime} that preserves all connections. More precisely, argue that there exists a measure on $\{0,1\}^{E(\mathbb{T})} \times\{0,1\}^{E\left(\mathbb{T}^{\prime}\right)}$ such that

- the marginal on $\{0,1\}^{E(\mathbb{T})}$ is $\mathbb{P}_{p}^{\mathbb{T}}$,
- the marginal on $\{0,1\}^{E\left(\mathbb{T}^{\prime}\right)}$ is the percolation on \mathbb{T}^{\prime} with edge-probability p on all edges except those around x that have edge-probability $1-p$,
- if $\left(\omega, \omega^{\prime}\right)$ has this distribution, then a.s. for any vertices $y, z \neq x$, we have $y \leftrightarrow z$ in ω iff $y \leftrightarrow z$ in ω^{\prime}.

From now on, we assume that p is the (unique) element of $(0,1)$ such that $p^{3}=3 p-1$.
3. Using the previous two questions, show that $p \geq p_{C}(\mathbb{T})$.

We want to prove that in fact $p=p_{c}(\mathbb{T})$. In the next question, we assume by contradiction that $p>p_{c}(\mathbb{T})$.
4. let $k<n$, and let $n^{\prime}=\left\lfloor\frac{n-k}{2}\right\rfloor$, consider the event \mathcal{B}_{n} that the boundary of $\left(n^{\prime}, n^{\prime}\right)+\Lambda_{k}$ is connected to the left-boundary of Λ_{n} and to the right-boundary of Λ_{n}.
(a) Show that $\mathbb{P}_{p}^{\mathbb{T}}\left(\mathcal{B}_{n}\right) \geq 1-2 \mathbb{P}_{p}^{\mathbb{T}}\left(\Lambda_{k} \nleftarrow \infty\right)^{1 / 4}$
(b) Show that $\mathbb{P}_{p}^{\mathbb{T}}\left(\mathcal{B}_{n} \backslash \mathcal{A}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(c) Conclude that $\mathbb{P}_{p}^{\mathbb{T}}\left(\mathcal{A}_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$ for any fixed $k>0$.
(d) Using duality and question 2, find a contradiction.
5. Conclude, and give also an equation satisfied by $p_{c}(\mathbb{H})$.

One can in fact identify that $p_{c}(\mathbb{T})=2 \sin (\pi / 18)$, and the apparition of a trigonometric formula here is no pure chance... Look up "isoradial graphs" for more on this subject.

The edge $x y$ is in $\tilde{\omega}$; the edge $u v$ is not.

Exercise 3 (Infinitely traversed edges). Consider bond percolation on the square lattice graph $\left(\mathbb{Z}^{2}, \mathbb{E}\right)$ at any percolation parameter $p \in[0,1]$. Let ω denote the random set of open edges. We say that an edge $x y \in \mathbb{E}$ is infinitely traversed if there is an ω-open self-avoiding path $\left(p_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{Z}^{2}$ indexed by all integers (positive and negative), such that $p_{0} p_{1}=x y$; see the figure above. Write $\tilde{\omega} \subset \omega$ for the random set of infinitely traversed edges. Write N and \tilde{N} for the number of infinite clusters of ω and $\tilde{\omega}$. Prove that for each $p \in[0,1]$,

$$
\mathbb{P}_{p}(N=\tilde{N})=1 .
$$

You may use any results from the course, provided that they are clearly stated.

