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Abstract. The theoretical physicists Berezinskii [Ber72] and independently Kosterlitz
and Thouless [KT73] described a new type of phase transition in the 1970s. They
argued that the motor behind this phase transition, which occurs in the classical XY
model (or classical plane rotor model) in two dimensions, is the changing influence of
topological defects known as vortices and antivortices. Roughly speaking, such vortices
and antivortices may be interpreted as particles in their own right, which are bound into
pairs of opposing charge at low temperature, but not at high temperature. Fröhlich and
Spencer rigorously established the Berezinskii–Kosterlitz–Thouless (BKT) transition in
the 1980s [FS81].

Ideas which appeared in the new millennium enabled the development of an original
perspective on the situation. The current lecture notes, which serve as the basis for the
cours Peccot (to be) taught at Collège de France in 2024, aim to rigorously present some
of these developments in a self-contained fashion. The following topics are covered:

• A phase transition for height functions is established through symmetry breaking,
• This transition is shown to be sharp by using renormalisation inequalities,
• The Brydges–Fröhlich–Spencer random walk is used to show that this phase transition

coincides with the BKT transition.
The existence of the BKT transition is derived as a corollary of those three results. We
highlight that these ideas enable the derivation of new results at and around the critical
point, where the work of Fröhlich and Spencer [FS81] is perturbative and therefore gives
less information at the critical point.
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1. The XY model and the BKT transition

We are interested in the XY model, which is also known in the literature as the plane
rotor model, the classical XY model, or the classical plane rotor model.

1.1. Definition of the XY model. Let G = (V,E) denote a finite simple graph, and let
S1 ⊂ C denote the unit circle embedded in the complex plane.

Definition 1.1 (The XY model). Let J ∈ [0,∞)E denote a family of coupling constants.
The Hamiltonian HXY

G,J(σ) ∈ R associated to a spin configuration σ ∈ (S1)V is defined by

HXY
G,J(σ) := −

∑
xy∈E

Jxy(σx, σy); (σx, σy) :=
1

2
(σxσ̄y + σ̄xσy).

The XY model on the graph G is the probability measure ⟨ · ⟩XY
G,J on (S1)V defined through

its expectation functional

⟨A⟩XY
G,J :=

1

ZXY
G,J

∫
A(σ)e−2HXY

G,J (σ)dσ; ZXY
G,J :=

∫
e−2HXY

G,J (σ)dσ,

where dσ denotes the Haar measure on (S1)V. Subscripts are omitted when they are clear
from the context. Typically we take J ≡ β ∈ [0,∞), in which case β is called the inverse
temperature.

Recall that the Haar measure is a probability measure in which each spin is oriented
independently and uniformly random in the unit circle. Notice that each term in the
definition of the Hamiltonian equals the cosine of the angle difference between σx and σy,
in the sense that

HXY(σ) = −
∑
xy∈E

Jxy cos(θy − θx); θ := −i log σ ∈ (R/2πZ)V. (1)

The Hamiltonian therefore favours configurations with small angle differences along the
edges. The inverse temperature parameter β regulates how strongly small angle differences
are favoured over large angle differences, see Figure 1. Let us also write T := 1/β for the
temperature; it is linguistically convenient to define this parameter although it is usually
the inverse temperature β that appears in mathematical equations.

β = 1/T ≈ ∞ β = 1/T ≈ 0

Figure 1. The XY model on a small graph. On the left, the temperature
is low, which means that alignment of the spins is strongly favoured. On the
right, the temperature is high, which means that the interaction is almost
negligible and as a consequence the spins behave almost independently.

The most important observable is the two-point function, defined, for a fixed pair of
vertices x, y ∈ V, as

⟨σxσ̄y⟩XY = ⟨σ̄xσy⟩XY = ⟨(σx, σy)⟩XY = ⟨cos(θy − θx)⟩XY.
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β > βc β = βc β < βc

Figure 2. The Ising model on a 100×100 torus. On the left, the interaction
is so strong that one of the two spin states in {±1} dominates the entire
picture, in the sense that there is a unique monochromatic infinite component
(in this case the large yellow cluster). The middle picture exhibits a sample
from the Ising model at the critical point. One can prove rigorously that
there is no infinite monochromatic cluster; instead, large, finite clusters of
either colour appear. On the right the interaction is too weak to induce long-
range correlations, and it can be proved that in this case all monochromatic
clusters are small.

Notice that the vertices x and y do not only interact through the edge xy (if this edge
exists), but also indirectly through all other edges in the graph.

1.2. Spin lattice models and phase transitions. For G we often take large subgraphs
of the square lattice graph Zd, and in those instances the XY model is called a lattice
model. Lattice models serve as discrete models for physical experiments. They also serve
as discretisations of Euclidean- and quantum field theories. There exists a large family
of lattice models, which facilitates the mathematical study of a vast range of physical
phenomena. The XY model is a lattice spin model, which means that the model consists of
random spins which are assigned to the vertices of the graph. The oldest lattice spin model
is undoubtedly the Ising model. Its definition is identical to that of the XY model, except
that the Haar measure dσ is replaced by the Haar measure on the set {±1}V, and 2HXY

is replaced by HIsing
G,J (σ) := −

∑
xy∈E Jxyσxσy.

We say that a lattice model undergoes a phase transition when its qualitative properties
change when a continuous parameter of the model, often the inverse temperature β, passes a
specific value, which is then called the critical point or critical temperature. For example, the
Ising model in dimension d = 2 is known to undergo a phase transition at some critical point
βc ∈ (0,∞), see Figure 2. Below the critical temperature, the Ising model in dimension
d = 2 exhibits an infinite monochromatic cluster (the yellow cluster on the left in Figure 2)
that consists of vertices that are all in the same state. This phenomenon is called long-range
order or spontaneous magnetisation in this context.

A common objective for physicists and mathematicians is the identification and classifi-
cation of phase transitions. Thus, interesting questions include:

(1) Does a model undergo a phase transition?
(2) What is the qualitative behaviour of the model at and around the critical point?
(3) What are the fundamental features of statistical mechanics models determining the

qualitative behaviour of the phase transition?
These questions depend starkly on the model of interest, but also on the dimension of the
graph on which they are studied. Peierls was amongst the first to prove the existence of a
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β > βc β < βc

Figure 3. The XY model on a 32× 32 torus at low and high temperature

phase transition in a lattice spin model, by deriving the magnetisation transition in the
Ising model in dimension d = 2 in 1936 [Pei36]. The Ising model is now perhaps the best
understood of all lattice models: we refer to two works of Duminil-Copin for a pedagogical
introduction [Dum17] and an overview [Dum22].

1.3. Physics overview. Let us start with a physical introduction to the Berezinskii–
Kosterlitz–Thouless (BKT) transition. The BKT transition concerns the XY model in
dimension d = 2 (that is, on the two-dimensional square lattice graph). The first question
is to ask if the model undergoes a phase transition, that is, if the model behaves differently
at low and high temperature. See Figure 3 for two samples from the XY model at different
temperatures. Let us make some preliminary observations.

• At high temperature (weak interaction), the spins seem to quickly decorrelate
over large distances. The two-point function ⟨σxσ̄y⟩XY

Z2,β decays exponentially fast
in ∥y − x∥2 when β ∈ (0,∞) is sufficiently small. This is in fact easy to prove
mathematically in several different ways, such as for example by analysis of the
high-temperature expansion, or by comparing the two-point function of the XY
model to an Ising model at high temperature or a percolation model with a small
percolation parameter.

• Our focus will therefore be on understanding the complementary regime, that is,
the regime where the interaction strength β ∈ (0,∞) is so large that it significantly
affects the system. Consider for a moment the situation where β is very large.
Neighbouring spins then tend to point in the same approximate direction. However,
the spins are sampled from a continuous measure, and therefore the alignment
is never perfect. Moreover, by expanding the cosine in (1) to second order, we
observe that small angles are penalised quadratically, and in particular angles of
order o(1/

√
β) are not penalised so much. This gives the model a certain flexibility

and sets it apart from the Ising model; in the low-temperature Ising model, a huge
energy gap must be bridged for neighbouring spins to be different.

Mermin and Wagner proved in 1966 that there is no continuous symmetry breaking in
two dimensions [MW66]. This essentially means that at any fixed inverse temperature
β ∈ (0,∞), the flexibility described above is sufficient to avoid a situation in which most
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A ground state A spin-wave excitation A topological excitation

Figure 4. The ground state and the two types of excitations

spins point in the same direction. This seems to contradict Figure 3, Left, where it looks
like most spins point towards the north, but the latter is only an artefact of the finite
size of the torus (32× 32) which is small compared to the value of β. More precisely, for
each value of β, there is a minimum size nβ for the torus above which the spins do not
exhibit a preferential direction. This result is a negative result, because it tells us that the
two-dimensional XY model cannot have a phase transition similar to the phase transition
of the two-dimensional Ising model.

Thus, the same question remains: does the model undergo any kind of phase transition?
There is a completely generic method for detecting phase transitions: namely, phase
transitions correspond to the points βc ∈ (0,∞) where some appropriately chosen quantities
Q(β) fail to be analytic. To illustrate this point, let us consider the partition function. Of
course, it is not possible to study the partition function of the full square lattice Z2 directly.
Write Λn := {−n, . . . , n}2 ⊂ Z2, and abuse notation to also write Λn for the subgraph of
the square lattice induced by Λn. Write En for the corresponding edge set. We consider
the pressure, that is, the renormalised quantity

P (β) := lim
n→∞

1

|Λn|
logZXY

Λn,β.

The Maclaurin series of P ( · ) is the formal series
∞∑
k=0

P (k)(0)

k!
βk.

Each derivative of P (β) at β = 0 can be calculated explicitly through a combinatorial
algorithm that runs in finite time. Thus, in order to gain intuition, one may calculate a
finite number of coefficients in the above series, and then heuristically extrapolate this
sequence of coefficients in order to guess an approximate value for the radius of convergence.
This radius of convergence is then conjectured to coincide with the first point where P (β)
fails to be analytic in β.

This procedure has drawbacks: the extrapolation of coefficients is entirely nonrigorous,
and there is no way to know the number of coefficients that need to be calculated in order
to see the correct pattern. Moreover, the radius of convergence may in fact indicate the
presence of complex singularities without physical meaning. Nevertheless, Stanley [Sta68]
and Moore [Moo69] used it to predict that the classical XY model undergoes a phase
transition in two dimensions. It must be said that the same method was used to predict a
phase transition for the classical Heisenberg model in two dimensions (see [Moo69] and the
references therein) which is now generally expected to be false (there do not exist rigorous
proofs in either direction).

In the 1970s, Berezinskii and independently Kosterlitz and Thouless proposed a mech-
anism for a phase transition in the classical XY model in two dimensions. In order
to understand this mechanism, let us concentrate for a moment on the Hamiltonian
HXY : (S1)Λn → R. A ground state is a global minimum of HXY. The ground states
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of HXY coincide precisely with the spin configurations in which all spins point in the
exact same direction, see Figure 4, Left. Deviations from the grounds state may be
decomposed into deviations of two types: first, it is possible that there are other local
minima than the ground state, second, a configuration may be a perturbation from a local
minimum. Perturbations away from a local minimum are called spin-wave excitations,
see Figure 4, Middle. Local minima other than the ground states are called topological
excitations, see Figure 4, Right. Topological excitations exist because the spin space S1 is
not simply connected, and correspond to faces of the square lattice graph where the spin
configuration makes a full turn.

Let us assume that each spin configuration σ can be written as an independent product
σ = σswσt, where σsw and σt capture the spin-wave deviations from the ground state
and the topological excitations respectively. This is not exactly true for the classical XY
model, but this assumption may be convincingly justified in several ways (we do not do
this here). The spin-wave σsw should be thought of as a continuous object as it captures
the (continuous) perturbations of the ground state, while σt is in its very nature a discrete
object counting the turns that the configuration makes around each face of the square
lattice graph. The previously mentioned Mermin–Wagner argument essentially asserts that
the spin-wave σsw does not exhibit magnetisation, which immediately implies that σ does
not exhibit magnetisation. The spin-wave may in fact be identified with another object:
the discrete Gaussian free field. Let us not go into details, but rather mention that the
latter is a well-understood object that is known not to undergo a phase transition. Thus, if
the XY model undergoes a phase transition, then this phase transition must be driven by
the topological content σt of the model.

Consider the regime of very low temperatures. Since topological excitations are costly,
they cannot occur with a large density. Nevertheless, they must occur with some positive
density due to entropy considerations. We interpret the faces where the configuration
makes a full turn (as in Figure 4, Right) as particles in their own right, and call them
vortices and antivortices. Indeed, the particles come in two flavours, depending on whether
the configuration turns in the same direction as the face (as in Figure 4, Right or the
bottom-left quarter of Figure 5), or in the opposite direction (as in the top-right quarter
of Figure 5). The particles are thought of as carrying some electric charge. At very low
temperature a single vortex is very energetically costly, but its cost is greatly diminished if
an antivortex appears nearby. Therefore it is natural that vortices and antivortices appear
in pairs of opposite sign (we say that they are bound into pairs), see Figure 5.

Berezinskii [Ber72] and independently Kosterlitz and Thouless [KT73] propose the
binding of vortices and antivortices as the motor behind the phase transition in the XY
model. They argue that while binding is natural at low temperature, there is some critical
temperature βc ∈ (0,∞) below which the interaction strength is so small that the vortices
and antivortices are not bound together and rather appear more or less independently.
While Berezinskii was the first to describe this mechanism, Kosterlitz and Thouless (in
addition to describing it) proposed a precise picture for the behaviour of the model around
the critical point βc using renormalisation group methods. This includes a prediction for
the behaviour of the two-point function. Kosterlitz and Thouless received the 2016 Nobel
prize in physics for their work (Berezinskii had passed away at the moment of the award),
and the phase transition is named the Berezinskii–Kosterlitz–Thouless transition in their
honour.

1.4. The Fröhlich–Spencer approach. Mathematically, we frame the BKT transition
as a qualitative change in the behaviour of the two-point function. As a first step, we prove
that the two-point function satisfies some regularity properties. These regularity properties
follow from so-called correlation inequalities, which are inequalities involving correlation
functions. They form the basic building blocks in the analysis of statistical mechanics
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Figure 5. A vortex-antivortex pair at very low temperature. The fact that
they appear close to each other greatly reduces the total energy cost, which
explains why they are bound in pairs.

models such as the XY model, and they were already known at the time that Fröhlich and
Spencer published their breakthrough work on the BKT transition.

Proposition (Ginibre inequality [Gin70]). For any finite graph G = (V,E), vertices
x, y, u, v ∈ V, and coupling constants J ∈ [0,∞)E, the random variables (σx, σy) and
(σu, σv) have a nonnegative covariance in ⟨ · ⟩XY. In other words, the following inequality
holds true:

⟨(σx, σy)(σu, σv)⟩XY ≥ ⟨(σx, σy)⟩XY⟨(σu, σv)⟩XY.

The proof is somewhat orthogonal to the rest of the theory; we leave it until later. We todo Add the proof in
a later section.now state two simple corollaries.

Lemma (Monotonicity in the coupling strengths). For any finite graph G = (V,E),
vertices x, y ∈ V, and families of coupling constants J, J ′ ∈ [0,∞)E, we have

J ≤ J ′ =⇒ ⟨(σx, σy)⟩XY
J ≤ ⟨(σx, σy)⟩XY

J ′ .

Proof sketch. Define the interpolation

f(α) := ⟨(σx, σy)⟩XY
J+α(J ′−J) =

∫
(σx, σy)e

2
∑

uv∈E(Juv+α(J ′
uv−Juv))(σu,σv)dσ∫

e2
∑

uv∈E(Juv+α(J ′
uv−Juv))(σu,σv)dσ

,

differentiate in α, then apply Ginibre to see that the derivative is nonnegative. □

Lemma (Monotonicity in the graph). Recall that (Λn, En) is the subgraph of the square
lattice induced by {−n, . . . , n}2. For any x, y ∈ Λn and β ∈ [0,∞), we have

⟨(σx, σy)⟩XY
Λn,β ≤ ⟨(σx, σy)⟩XY

Λn+1,β.

Proof. Apply the previous lemma, noting that ⟨(σx, σy)⟩XY
Λn,β

= ⟨(σx, σy)⟩XY
Λn+1,β·1En

. □

Definition 1.2. For any x, y ∈ Z2 and β ∈ [0,∞), define

⟨(σx, σy)⟩XY
Z2,β := lim

n→∞
⟨(σx, σy)⟩XY

Λn,β.

This limit exists due to monotonicity in the graph, and this quantity is increasing (that
is, nondecreasing) in β due to monotonicity in the coupling strengths. The monotonicity in
the graph implies that the limit is invariant under replacing Λn by Λn − v for some fixed
v ∈ Z2, and therefore the quantity is invariant under shifting x and y by the same vector v.

Definition 1.3 (Definition of the critical point). There exists a unique value βc ∈ [0,∞]
such that:
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• For β < βc, ⟨(σx, σy)⟩XY
Z2,β decays exponentially fast in ∥y − x∥2,

• For β > βc, ⟨(σx, σy)⟩XY
Z2,β does not decay exponentially fast in ∥y − x∥2.

The constant βc is called the critical inverse temperature or the BKT point.

This is a practical definition for a critical point for the following reasons.

• It clearly encodes a qualitative change in the behaviour of the two-point function.
• It is easy to prove that βc > 0 (we also do this later). todo Add reference to

the location.• Derivatives of many interesting quantities, such as the pressure P (β) defined in
Subsection 1.3, can be expressed in terms of two-point functions. If the two-
point function exhibits exponential decay, then one expects to be able to bound
those derivatives, implying that those quantities are analytic. This suggests that
there cannot be any phase transitions as long as the two-point function decays
exponentially fast. Thus, βc should in fact coincide with the smallest critical point.
In particular, if it so happens to be that βc = ∞, then one would expect that the
model does not undergo any kind of phase transition.

The highlight of these notes is that we provide a new, rigorous proof of the following fact.

Theorem 1 (Existence of the BKT transition [FS81]). On Z2, we have βc < ∞.

In fact, Fröhlich and Spencer prove much more precise results on the behaviour of the
two-point function for large values of β, and the above theorem is a mere corollary of that.

Theorem ([FS81]). There exists a constant κ ∈ (0,∞) such that

⟨(σx, σy)⟩XY
Z2,β ≥ 1

κ(1 + ∥y − x∥2)κ/β
∀β ∈ [κ,∞), ∀x, y ∈ Z2.

We now give a very rough sketch of how Fröhlich and Spencer proved this result. At the
first step of the proof, they transform the model into a model of height functions. These
are random integer- or real-valued functions on the square lattice Z2. The XY model itself
is dual to an integer-valued height function; see Subsection 1.6 below. One would like
to understand how much this integer-valued height function deviates from a real-valued
Gaussian height function called the Gaussian free field. As was already mentioned in the
physics introduction, this Gaussian free field is understood well from the mathematical
perspective. In order to compare the integer-valued height function to the Gaussian free
field, one introduces a family of interpolations between the two, which essentially consists
of Gaussian free fields but with an extra interaction term which makes the heights prefer to
be close to an integer. This interaction term may be interpreted as a magnetic field. The
interaction strengths of this magnetic field at each vertex are interpreted as particles or
charges in their own right. At very low temperature, one can show that those particles or
charges are sufficiently well-behaved, which allows one to derive the desired bounds on the
two-point function. We refer to [KP17] for a pedagogical introduction to the proof. While
the proof requires the temperature of the XY model to be very low (very high β), it is
quite robust. For example, the result of Fröhlich and Spencer is stable under introducing
arbitrary magnetic fields of a certain kind, as is demonstrated in the recent work of Garban
and Sepúlveda [GS20]. This is remarkable because this particular magnetic field destroys
any kind of symmetry, thus demonstrating that the proof does not depend on it.

The relation with the height function is still central in this course, but our analysis of the
height function is entirely distinct from the one of Fröhlich and Spencer. In particular, we
focus on probabilistic methods which also allow us to derive results on the height function
at and around the critical point βc defined above.
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1.5. Expansion of the XY model. For any functions a and b defined on some finite set
X, we use the following shorthand notations:

ab :=
∏
x∈X

abxx ; a! :=
∏
x∈X

ax!.

We first state a trivial result concerning the infinite-temperature XY model.

Proposition. Consider the XY model on G at inverse temperature β = 0. Then

∀a ∈ ZV, ⟨σa⟩XY
G,0 =

∫
σadσ = 1{a≡0}.

Proof. Recall that dσ denotes the Haar measure (a probability measure) in which all spins
are independent and uniformly random. If a ≡ 0 then we are integrating the integrand
1 with respect to a probability measure. By independence, the integral decomposes as a
product over the vertices. If ax ̸= 0 then we are averaging σax

x with respect to the uniform
distribution dσx on the unit circle S1 ⊂ C, which clearly produces zero. □

Recall from Definition 1.1 for the XY model that the expectation ⟨A⟩XY
G,J of any random

variable A is defined through

ZXY⟨A⟩XY :=

∫
A(σ)e−2HXY(σ)dσ.

We are principally interested in the partition function (A ≡ 1) and in multipoint correlation
functions (A(σ) = σa for some a ∈ ZV). Both cases are treated simultaneously; the
partition function just corresponds to the choice a ≡ 0. We start our analysis by first
writing e−2HXY(σ) as a product over the terms in the definition of the Hamiltonian, then
expanding the exponential in each factor so appearing. This yields

ZXY⟨σa⟩XY =

∫
σae−2HXY(σ)dσ

=

∫
σa

∏
xy∈E⃗

eJxyσxσ̄ydσ

=
∑

n∈(Z≥0)E⃗

Jn

n!

∫
σa

∏
xy∈E⃗

(σxσ̄y)
nxydσ. (2)

For the last equation, we expanded each exponential, but we also interchanged the sum and
the integral. This is easily justified: the combinatorial terms in the denominator grow so
fast that we may apply Fubini’s theorem without blinking an eye. The final expression (2)
may be simplified in two steps: first, we rewrite the sum on the left in terms of a measure
(in some sense this step is purely cosmetic); second, we evaluate the integral over dσ using
the previous proposition.

For the first step, we first introduce the product measure on n ∈ (Z≥0)
E⃗ defined through

MG,J [{n = m}] := Jm

m!
=

∏
xy∈E⃗

J
mxy
xy

mxy!
.

Notice that MG,J is the nonnormalised version of the probability measure in which n is a
family of independent Poisson random variables whose parameters are given by J . Again,
we drop subscripts when they are obvious from the context. The random function n is
called a directed random current. We may now rewrite (2) into

ZXY⟨σa⟩XY = M

∫ σa
∏
xy∈E⃗

(σxσ̄y)
nxydσ

 .
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ZXY ZXY⟨σ̄xσy⟩XY

Figure 6. Two multigraphs (V,n) contributing to the expansions of the
two quantities. The graph G consists of four vertices, five edges, and is
drawn in grey. Each multigraph (V,n) is visualised as follows: each multi-
edge corresponding to an edge xy is assigned a uniformly random time in
the interval [0, Jxy]. The time axis points in the vertical direction. For
example, on the left, there are

∑
xy nxy = 7 multi-edges, and therefore there

are 7 time-decorated directed edges, drawn in blue.

We interpret (V,n) as a random directed multigraph, where nxy counts the number of
multi-edges pointing from x to y.

We now focus on the second step, namely the integral over dσ appearing in the previous
display. Observe that∏

xy∈E⃗

(σxσ̄y)
nxy = σ∂n; ∂n : V → Z, x 7→

∑
y∼x

nxy − nyx.

Thus, (∂n)x equals the out-degree minus the in-degree of the vertex x in the random graph
(V,n). The function ∂n is called the source function, and if ∂n ≡ 0 then the directed
random current n is called sourceless. Using the proposition for the infinite-temperature
XY model, we get ∫

σa
∏
xy∈E⃗

(σxσ̄y)
nxydσ =

∫
σa+∂ndσ = 1{a+∂n=0}.

We have now proved the following theorem, illustrated by Figure 6.

Theorem 1.4 (The Poisson expansion of the XY model). Consider the XY model on a
finite graph G with coupling constants J ∈ [0,∞)E. Then

∀a ∈ ZV, ZXY⟨σa⟩XY = M[{∂n = −a}].

In particular,
ZXY = M[{∂n = 0}].

Thus, we have rewritten the partition and correlation functions of the XY model in
terms of independent Poisson random variables, with a condition on the net-degree of the
multigraph (V,n) at each vertex.

1.6. The height function. Now let G = (V,E,F) denote a finite planar graph (Figure 7);
this is just a finite graph (V,E) embedded in the plane R2 ∼= C such that no two edges
cross; F denotes the set of faces including a special outer face f∞ ∈ F. The dual edge xy∗

of an edge xy ∈ E is the set containing the two faces adjacent to the edge xy. Let E∗

denote the set of dual edges, and let G∗ := (F,E∗,V) denote the dual planar graph.
We now define the height function associated to sourceless directed currents on finite

planar graphs. The definition, contained in the following theorem, is illustrated by Figure 8.
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Theorem 1.5 (The height function of a sourceless current). Let n ∈ (Z≥0)
E⃗ denote a

sourceless directed current on the directed edges of the finite planar graph G = (V,E,F).
Then there exists a unique function hn ∈ ZF with the following two properties:

• For any directed edge xy ∈ E⃗ having the face fr(xy) ∈ F on its right and the face
fℓ(xy) ∈ F on its left, we have

hn(fr(xy))− hn(fℓ(xy)) = nxy − nyx,

• We have hn(f∞) = 0.
This function is called the height function of the sourceless current n.

Proof. We first focus on uniqueness of the height function hn. The first property guarantees
uniqueness of the gradient of hn; the second property fixes the global constant. It suffices
to prove existence of the height function hn. We would like to define hn(f) as the integral
of the gradient (given by the first property) along a path from f∞ to f . For existence, it
suffices to prove that this definition is independent of the chosen path. In fact, it suffices to
prove that for each vertex x ∈ V, the path integral of the gradient over the closed path
visiting the faces around x yields zero. This requirement is precisely equivalent to the
requirement that (∂n)x = 0, which is equivalent to sourcelessness of n. □

Definition 1.6 (The law on height functions). For fixed β ∈ [0,∞), let Vβ : Z → [0,∞]
denote the Poisson potential defined by

Vβ(k) := − logPβ[{A−B = k}] = 2β − log
∑

a,b∈Z≥0, a+b=k

βa+b

a! · b!
,

where A and B are independent Poisson random variables of parameter β in the probability
measure Pβ . For any finite planar graph G = (V,E,F) and any family of coupling constants
J ∈ [0,∞)E, let µ∗

G,J denote the probability measure on height functions h ∈ ZF defined
by

µ∗
G,J [{h = ζ}] :=

1{ζ(f∞)=0}

Z∗
G,J

e−H∗
G,J (ζ),

where

H∗
G,J(ζ) :=

∑
fg∈E∗

VJfg(ζ(g)− ζ(f)); Z∗
G,β :=

∑
ζ∈ZF

1{ζ(f∞)=0}e
−H∗

G,J (ζ).

Here we slightly abuse notation by writing Jfg := J(fg)∗ .

Figure 7. A small planar graph with faces F = {f1, f2, f3, f4, f∞}.

Figure 8. The height function hn ∈ ZF of the sourceless current n.
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The function e−Vβ is the probability mass function of the difference of two independent
Poisson random variables of parameter β. This function e−Vβ is log-concave, being the
convolution of two log-concave distributions. It is also symmetric around 0 ∈ Z, and
therefore attains its minimum at zero. This means that the height function h ≡ 0 is the
ground state.

Each function Vβ is convex and symmetric. We think of H∗
β(h) as penalising large

gradients for h; it “pulls” heights at neighbouring faces together. When β = 0 the
probability mass function e−Vβ equals 1{0}, which means that this pull is “infinitely strong”;
only the ground state h ≡ 0 has finite energy. As β increases, the distribution e−Vβ becomes
more spread out, which means that the favouring of small gradients is softer.

Theorem 1.7 (The XY–heights correspondence). Let G = (V,E,F) denote a finite planar
graph and let J ∈ [0,∞)E. Then

∀ζ ∈ ZF, Z∗ · µ∗[{h = ζ}] = M[{hn = ζ} ∩ {∂n ≡ 0}].

In particular:
• The two models share the same partition function, that is, Z∗ = ZXY,
• The law of hn in M[ · |{∂n ≡ 0}] is precisely µ∗.

Here we use the notation M [ · |A] := M [( · )1A]/M [A] for the measure M conditioned on
the event A. This measure is a probability measure, even if M is not.

Proof. Fix ζ. We have an explicit expression for Z∗ · µ∗[{h = ζ}]. To find an expression for
M[{hn = ζ} ∩ {∂n ≡ 0}], one must sum the mass of all currents contributing to the event.
At each edge xy ∈ E, the value of nxy − nyx of any contributing current can be expressed
directly in terms of ζ. By summing the possible values for the current at each edge, one
finds exactly the same expression as for the height functions measure. □

Remark 1.8 (Phase transitions and partition functions). As discussed in the physics
introduction, phase transitions are sometimes defined as the points where the pressure P (β)
(or some derived quantity) fails to be analytic in the parameter β. From this perspective,
Theorem 1.7 suggests that in the planar setting, the phase transition of the XY model is
identical to that of the dual height function.

One can also define the phase transition as the critical value for β where a qualitative
change in the behaviour of the model occurs. Of course, the two definitions of phase
transition are believed to coincide almost always, but this is not always easy to make
rigorous mathematically.

In fact, in these lectures, we shall prove that the transition in the qualitative behaviour
occurs at the same point for the two models, but we do not prove that this point coincides
with the “partition function transition point”. This conjecture remains, to the best knowledge
of the author, open.

Remark 1.9 (The XY-height correspondence as a Fourier transform). We view the height
function as a Fourier transform of the XY model. There are several reasons for this.

• The spins of the XY model take values in the unit circle. The group Z of integers is
the Fourier dual of the circle. Thus, it is no surprise that the dual model is a model
of height functions.

• We observe a form of temperature inversion. This means that when the interactions
of the XY model are strong (high β), the interactions in the height functions model
are weak (the Hamiltonian does not penalise gradients so much). On the other hand,
when β = 0, the spins in the XY model are independent (no interaction), while
the gradients along all edges are deterministically forced to be zero. Temperature
inversion may be viewed as a form of the Heisenberg uncertainty principle.
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Remark 1.10 (The planar Ising model and the self-dual point). One can execute a similar
analysis for the Ising model. In this case, the dual model is also an Ising model, since the
Fourier dual to the group Z/2Z is Z/2Z. Suppose that the underlying graph G = (V,E,F)
is the square lattice graph, which is self-dual. Temperature inversion means that the
dual model is an Ising model at some “dual” temperature T ∗ := T ∗(T ), which is strictly
decreasing in the value of the temperature T of the original Ising model. If one believes that
the model undergoes exactly one phase transition which can furthermore be read off from
the partition function, then this phase transition must necessarily occur at the self-dual
point, that is, the unique value for T such that T ∗ = T . Since the relation T ∗(T ) between
the primal and dual temperature is completely transparent, the above yields a very simple
way to calculate the exact value of the critical temperature.

There exist several methods to justify the assumptions made above and to demonstrate
that the self-dual point coincides with the transition point (Onsager was the first to calculate
the precise value of the transition temperature in 1944 [Ons44]). In the case of the XY
model we are not so lucky: the dual model is not an XY model (but a height functions
model), and therefore there is obviously no special temperature exhibiting self-duality. In
fact, although we are going to prove the existence of a critical point, its precise value
remains unknown. On the other hand, this also makes the model more interesting: for the
Ising model, the duality relation implies that the subcritical and the supercritical phase
exhibit similar behaviour. This argument does not apply to the XY model, and in fact the
subcritical phase β < βc and the supercritical phase β > βc are fundamentally different.

1.7. The new approach. The new approach to Theorem 1 consists of three steps.
(1) First, we prove that the height function undergoes a phase transition. This was

already known in the work of Fröhlich and Spencer, but our method is entirely
original. We use basic ideas from percolation theory, in place of a perturbative
expansion with charged particles.

(2) Second, we prove that the phase transition for height functions is sharp. This means
that two transition points coincide, namely the transition point where correlations
start decaying exponentially fast, and the transition point where the fluctuations of
the height function become bounded. This is the first time that the behaviour of
the height function is described at and around the transition point.

(3) Third, we use the Brydges–Fröhlich–Spencer walk in order to derive a direct relation
between the decay rate (also known as the mass) in the XY model, and the decay
rate in the dual height function. In particular, the mass of the XY model vanishes
if and only if the mass of the height function vanishes. In other words, the phase
transitions of the two models coincide. This means that the existence of the BKT
transition is now a corollary of the existence of the phase transition of the height
function, which was established in the first step.

Several tangential results are obtained en passant.
Shortly after the first step appeared online, two teams proved (independently of one

another) that the first step implies the BKT transition [AHPS21, EL23]. The second step
outlined above is a priori unrelated to the BKT transition and to [AHPS21, EL23], as
it is exclusively concerned with the phase transition of the height function. The third
step outlined above (which is about the relation between the two models) relies on a
somewhat different analysis than the ones in [AHPS21, EL23], and may thus be considered
an alternative to [AHPS21, EL23]. The advantage of this third step is that it proves the
equivalence (beyond the mere existence) of the two phase transitions.

2. Review of the FKG inequality

The purpose of this section is to develop some ideas around the FKG inequality. To
keep the discussion light, we sometimes omit mentioning the σ-algebra, in which case its
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presence is implicit. In those instances, it is implicitly understood that we only consider
observables which are measurable. For example, when we work with probability measures
supported on countably many elements, then we can just consider the complete σ-algebra
on the underlying sample space, and there is not really a need to mention it specifically.

2.1. The Harris inequality and the FKG inequality.

Definition 2.1 (FKG inequality). Let (Ω,⪯) denote a partially ordered set and µ a
probability measure on Ω. We say that µ satisfies the FKG inequality if

µ[fg] ≥ µ[f ]µ[g] (3)

for any bounded ⪯-nondecreasing functions f, g : Ω → R.

For simplicity, we often call ⪯-nondecreasing functions increasing and ⪯-nonincreasing
functions decreasing. Notice that f is increasing if and only if −f is decreasing. The FKG
inequality may therefore be formulated in terms of decreasing functions, or in terms of a
mixture of increasing and decreasing functions.

Remark 2.2. The FKG inequality is named after Fortuin, Kasteleyn, and Ginibre, because
they proved Theorem 2.13 and Corollary 2.14 stated below in 1971 [FKG71]. Thus, it would
be most correct to only call Equation (3) the FKG inequality if one of those results is used
to establish it. However, we shall simply use the term FKG inequality for any situation
where Equation (3) holds true in order to avoid confusion.

The inequality in Equation (3) had already been obtained by Harris in the context
of independent percolation models in 1960 [Har60, Lemma 4.1]. Thus, in the context of
independent percolation, Equation (3) is called the Harris inequality. We state and prove
the Harris inequality below in Theorem 2.6.

The FKG inequality is closely related to stochastic domination.

Definition 2.3 (Stochastic domination). Let µ and ν denote two probability measures
on some partially ordered set (Ω,⪯). We say that µ is stochastically dominated by ν, and
write µ ⪯stoch ν, if for any bounded increasing function f : Ω → R, we have µ[f ] ≤ ν[f ].

Recall that for any event E ⊂ Ω of positive probability, the conditional expectation
µ[ · |E] is defined through

µ[ · |E] := µ[( · )1E ]/µ[E].

We call an event E increasing or decreasing whenever its characteristic function 1E is
increasing or decreasing respectively.

Lemma 2.4. Let (Ω,⪯) denote a partially ordered set and µ a probability measure on
Ω satisfying the FKG inequality. Suppose that the events E+ and E− are increasing and
decreasing respectively, and that both occur with positive probability. Then

µ[ · |E−] ⪯stoch µ ⪯stoch µ[ · |E+].

Proof. Using the definitions of the FKG inequality and of conditional measure, we get that
for any bounded increasing function f , we have

µ[f ] ≤ µ[f1E+ ]/µ[1E+ ] = µ[f |E+].

We conclude that µ ⪯stoch µ[ · |E+]. The other inequality is proved similarly. □

Exercise 2.5 (The FKG inequality on totally ordered sets). Prove that if (Ω,⪯) is a totally
ordered set (such as R), then any probability measure on it satisfies the FKG inequality.

As partially ordered set (Ω,⪯) we often take the set of real-valued functions on some fixed
countable index set I, endowed with the natural partial ordering on this set of functions
(that is, ω ⪯ η whenever ωi ≤ ηi for all i ∈ I).
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Theorem 2.6 (Harris inequality [Har60, Lemma 4.1]). Let I denote a finite index set,
and let µi denote a measure on R for each i ∈ I. Then the product measure

∏
i µi on RI

satisfies the FKG inequality.

In order to prove this result, we first state a useful property.

Lemma 2.7 (Tower property). Let (Ω,⪯) and (Ω̃, ⪯̃) denote two partially ordered sets.
Suppose given a probability measure µ on Ω and, for each ω ∈ Ω, a probability measure κω
on Ω̃. Assume the following:

• µ satisfies the FKG inequality on (Ω,⪯),
• κω satisfies the FKG inequality on (Ω̃, ⪯̃) for any ω ∈ Ω,
• The map ω 7→ κω is increasing, that is,

(ω ⪯ η) =⇒ (κω ⪯stoch κη) ∀ω, η ∈ Ω.

Then the measure ν := µκ :=
∫
dµ(ω)κω[ · ] satisfies the FKG inequality on (Ω̃, ⪯̃).

Proof. Consider two bounded increasing functions f, g : Ω̃ → R, and write F,G : Ω → R for
the functions ω 7→ κω[f ] and ω 7→ κω[g] respectively. Notice that F and G are increasing
because the map ω 7→ κω is increasing. Now

ν[fg] =

∫
dµ(ω)κω[fg] ≥

∫
dµ(ω)κω[f ]κω[g] = µ[FG] ≥ µ[F ]µ[G] = ν[f ]ν[g].

The first and second inequality are due to the FKG inequality for κω and µ respectively. □

The Harris inequality is an immediate corollary of Exercise 2.5 and the product rule.

Lemma 2.8 (Product rule). Let µ and µ′ denote probability measures satisfying the FKG
inequality on the partially ordered sets (Ω,⪯) and (Ω′,⪯′) respectively. Then µ⊗µ′ satisfies
the FKG inequality on the partially ordered set (Ω× Ω′,⪯ × ⪯′).

Proof. For ω ∈ Ω, we define κω := δω ⊗ µ′. The map ω 7→ κω is clearly increasing, and the
measure κω satisfies the FKG inequality because µ′ satisfies the FKG inequality. The tower
property implies that ν = µκ = µ× µ̃ satisfies the FKG inequality. □

The Harris inequality is often applied in the context of independent percolation. In the
remainder of this subsection, let G = (V,E) denote a simple graph.

Definition 2.9 (Edge percolation measure). An edge percolation measure is a probability
measure on Ω := {0, 1}E endowed with the product σ-algebra. Given a percolation
configuration ω ∈ Ω, we call an edge xy ∈ E open when ωxy = 1 and closed when ωxy = 0.
We typically identify ω with the set of open edges, and study the random graph (V, ω).
We say that ω percolates if this graph contains an infinite connected component. Write
ωc := 1 − ω for the complementary percolation; we can also study the random graph
(V, ωc) = (V,E \ ω) of closed edges.

The FKG inequality is very useful in the context of percolation measures, because
connectivity events such as

{x ↔ y} := {ω : x and y belong to the same connected component of (V, ω)}
are often increasing. Other interesting events include:

{x ↔S y} := {ω : there exists an ω-open path from x to y through S} ∀S ⊂ V;

{x ↔ ∞} := {ω : x belongs to an infinite connected component of (V, ω)}.

Definition (Independent edge percolation model). Consider some function p ∈ [0, 1]E.
Then the independent edge percolation measure on G with opening probabilities p is defined
as the measure

µedge
G,p :=

∏
xy∈E

(pδ0 + (1− p)δ1).
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This means that each edge xy is open with a probability pxy and closed with a probability
1− pxy, independently of the states of all other edges.

Being a product measure, the Harris inequality applies to µedge
G,p when G is finite.

Exercise 2.10. Suppose that G is a finite connected simple graph, and consider some
function p ∈ (0, 1)E. Prove that the map

d : V ×V → R, xy 7→ − logµedge
G,p [{x ↔ y}]

defines a metric on V. Notice in particular that the Harris inequality implies the triangular
inequality for d.

Definition (Site percolation). A site percolation measure is a probability measure on
Ω := {0, 1}V endowed with the product σ-algebra. Given a percolation configuration ω ∈ Ω,
we call a site x ∈ V open when ωx = 1 and closed when ωx = 0. We typically identify ω
with the set of open sites, and study the random graph (ω, ωE), where ωE denotes the set
of edges which are entirely contained in ω. We say that ω percolates if this graph contains
an infinite connected component. Write ωc := 1− ω; we can also study the random graph
(ωc, (ωc)E) = (V \ ω, (V \ ω)E) of closed sites. For p ∈ [0, 1]V, define the independent site
percolation measure

µsite
G,p :=

∏
x∈V

(pδ0 + (1− p)δ1).

The Harris inequality also applies to independent site percolation on finite graphs. The
definitions of

{x ↔ y}; {x ↔S y}; {x ↔ ∞}
adapt to site percolation in the obvious way, and these events are obviously increasing in
this context as well.

2.2. The FKG lattice condition. Fortuin, Kasteleyn, and Ginibre proposed a more
general strategy for deriving Equation (3). This strategy is explained in this subsection.
We closely follow [FKG71].

Definition 2.11 (Distributive lattices). A distributive lattice is a tuple (Ω,⪯,∨,∧) where
(Ω,⪯) is a partially ordered set and where ∨,∧ : Ω×Ω → Ω are binary operators satisfying
the following properties for any x, y, z ∈ Ω:

(1) x ∨ y equals the least upper bound of x and y with respect to ⪯,
(2) x ∧ y equals the greatest lower bound of x and y with respect to ⪯,
(3) The following two distribution equations:

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

The tuple is called finite or countable whenever Ω has these respective properties.

Definition 2.12 (FKG lattice condition). Let X : Ω → [0,∞) denote a function defined on
some distributive lattice (Ω,⪯,∨,∧). We say that X satisfies the FKG lattice condition if

X(ω ∨ η) ·X(ω ∧ η) ≥ X(ω) ·X(η) ∀ω, η ∈ Ω.

Theorem 2.13. Let (Ω,⪯,∨,∧) denote a finite distributive lattice, and let X : Ω → [0,∞)
denote a strictly positive function satisfying the FKG lattice condition. Then the probability
measure µ defined by its expectation functional

µ[f ] :=
1

Z

∑
ω∈Ω

X(ω)f(ω); Z :=
∑
ω∈Ω

X(ω)

satisfies the FKG inequality on (Ω,⪯).
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Proof. Induct on |Ω|: the induction basis is trivial, and we assume that |Ω| ≥ 2. The proof
of the induction step consists of two parts: first, we decompose the lattice Ω into a number
of strictly smaller sublattices, then we use the induction hypothesis (the FKG inequality on
these sublattices) and the FKG lattice condition to derive the FKG inequality on Ω.

Let o ∈ Ω denote the unique ⪯-minimal element, and let a denote some ⪯-minimal
element in Ω \ {o}. Define

Ω+ := {ω ∈ Ω : a ⪯ ω}; 1+ := 1Ω+ ; µ+[ · ] := µ[ · |Ω+];

Ω− := {ω ∈ Ω : a ̸⪯ ω}; 1− := 1Ω− ; µ−[ · ] := µ[ · |Ω−];

Ω′
− := {ω ∨ a : ω ∈ Ω−}; 1′

− := 1Ω′
−
; µ′

−[ · ] := µ[ · |Ω′
−].

Claim. The following hold true:
(1) The three subsets of Ω are in fact sublattices,
(2) The map ω 7→ ω ∨ a is an isomorphism from Ω− to Ω′

−,
(3) The set Ω′

− is a decreasing subset of (Ω+,⪯).
Notice that the induction hypothesis implies the FKG inequality for the expectation
functionals on the three smaller lattices.

Proof of the claim. The proof is an elementary exercise involving distributive lattices.
(1) It is straightforward to work out that Ω+ is a sublattice; it is also straightforward

to see that Ω′
− is a sublattice whenever Ω− is a sublattice. We therefore focus on

Ω−. The fact that o and a are ⪯-minimal in Ω and Ω \ {o} respectively imply that

(a ̸⪯ ω) ⇐⇒ (ω ∧ a = o) ∀ω ∈ Ω.

In other words,
Ω− = {ω ∈ Ω : ω ∧ a = o},

which is clearly a sublattice.
(2) The map ω 7→ ω ∨ a is a homomorphism of lattices; it suffices to show that it is

injective. Suppose that ω, ω′ ∈ Ω− have the same image. Then

ω = ω ∧ (ω ∨ a) = ω ∧ (ω′ ∨ a) = (ω ∧ ω′) ∨ (ω ∧ a) = (ω ∧ ω′) ∨ o = ω ∧ ω′.

By symmetry of ω and ω′, this means that ω = ω′, thus proving injectivity.
(3) Let x ∈ Ω− and x′ := x ∨ a ∈ Ω′

−. Choose y′ ∈ Ω+ with y′ ⪯ x′; it suffices to prove
that y′ ∈ Ω′

−. Notice that

y′ = y′ ∧ x′ = y′ ∧ (x ∨ a) = (y′ ∧ x) ∨ (y′ ∧ a) = (y′ ∧ x) ∨ a.

But y′ ∧ x ∈ Ω− which indeed proves that y′ ∈ Ω′
−.

Assertion. For any increasing function f on (Ω,⪯) we have µ−[f ] ≤ µ+[f ].

Proof of the assertion. We shall in fact prove the stronger statement that

µ+[f ] ≥ µ′
−[f ] ≥ µ−[f ]. (4)

The inequality on the left follows from the FKG inequality for µ+[ · ]. Indeed,

µ+[f ] ≥ µ+[f |Ω′
−] = µ′

−[f ].

The inequality is the FKG inequality applied to the increasing function f and the decreasing
subset Ω′

− of (Ω+,⪯) (see the claim).
Now focus on the right inequality in (4). Since Ω− → Ω′

−, ω 7→ ω ∨ a is a bijection, we
have

µ′
−[f ] =

∑
ω∈Ω−

X(ω ∨ a)f(ω ∨ a)∑
ω∈Ω−

X(ω ∨ a)
.
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Writing X(ω ∨ a) = X(ω)X ′(ω) where X ′(ω) := X(ω∨a)
X(ω) , we get

µ′
−[f ] =

µ−[f(ω ∨ a)X ′]

µ−[X ′]
≥ µ−[fX

′]

µ−[X ′]
.

For the inequality in this display we just used that f(ω ∨ a) ≥ f(ω). To conclude that the
right hand side equals at least µ−[f ] we apply the FKG inequality to µ−[ · ], observing that
f is increasing by assumption and that X ′ is increasing due to the FKG lattice condition.
This establishes the assertion.

Let f and g denote increasing functions on (Ω,⪯). Our goal is to prove that

∆ := µ[fg1Ω]µ[1Ω]− µ[f1Ω]µ[g1Ω] ≥ 0.

Writing 1Ω = 1+ + 1−, this is equivalent to demonstrating nonnegativity of

∆ = µ[fg1+]µ[1+]− µ[f1+]µ[g1+]

+ µ[fg1−]µ[1−]− µ[f1−]µ[g1−]

+ µ[fg1+]µ[1−]− µ[f1+]µ[g1−]

+ µ[fg1−]µ[1+]− µ[f1−]µ[g1+].

The FKG inequalities for µ±[ · ] imply that:
• The first and second line are nonnegative,
• For the third and fourth line, we have µ[fg1±] ≥ µ[f1±]µ[g1±]/µ[1±].

Applying these inequalities and multiplying both sides by µ[1+]µ[1−] yields

∆µ[1+]µ[1−] ≥ (µ[f1+]µ[1−]− µ[f1−]µ[1+])(µ[g1+]µ[1−]− µ[g1−]µ[1+]).

Both factors on the right are nonnegative due to the assertion. □

It was quite useful in the previous proof that the lattice was finite and that each of its
elements had a positive probability of occurring. It is trivial to remove these requirements
a posteriori.

Corollary 2.14. Let (Ω,⪯,∨,∧) denote a distributive lattice, and let X : Ω → [0,∞) denote
a function satisfying the FKG lattice condition and such that Support(X) := {X > 0} ⊂ Ω
is nonempty and countable, and such that Z :=

∑
ω∈Support(X)X(ω) is finite. Then the

probability measure µ defined by its expectation functional

µ[f ] :=
1

Z

∑
ω∈Support(X)

X(ω)f(ω)

satisfies the FKG inequality on (Ω,⪯).

Proof. The set Support(X) is closed under ∨ and ∧ because of the FKG lattice condition,
and therefore it forms a countable sublattice. Let (ωk)k≥0 denote an enumeration of its
elements, let Ωn denote the finite sublattice generated by ω0, . . . , ωn, and let µn denote the
probability measure defined by

µn[f ] :=
1

Zn

∑
ω∈Ωn

X(ω)f(ω); Zn :=
∑
ω∈Ωn

X(ω).

Now each measure µn satisfies the FKG inequality, and since µn → µ in the total variation
metric, this also implies the FKG inequality for µ. □

We proved the FKG inequality in the context of general distributive lattices. In practice,
however, all our distributive lattices (Ω,⪯,∨,∧) have the following structure:

• Ω is a subset of RI where I is some countable index set,
• ⪯ is the restriction to Ω of the standard partial ordering on functions in RI ,
• ∨ and ∧ denote the pointwise maximum and minimum operations respectively.
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Lemma 2.15 (Basic properties). Let Ω denote a distributive lattice.
• If Ω is totally ordered, then any X : Ω → [0,∞) satisfies the FKG lattice condition.
• Let Ωi denote a distributive lattice and Xi : Ωi → [0,∞) a function satisfying the

FKG lattice condition for i ∈ {1, 2}. Then for each i ∈ {1, 2}, the function

X̃i : Ω1 × Ω2, (ω1, ω2) 7→ Xi(ωi)

satisfies the FKG lattice condition on Ω1 × Ω2.
• If X,Y : Ω → [0,∞) satisfy the FKG lattice condition, then so does XY .
• If Ω is a sublattice of RI , then for any convex function V and for any i, j ∈ I, the

function ω 7→ e−V (ωj−ωi), Ω 7→ [0,∞) satisfies the FKG lattice condition.

The proofs of these basic properties are left to the reader as an exercise.

Lemma 2.16 (Monotonicity in boundary conditions). Let Ω and Ω′ denote two distributive
lattices and X : Ω× Ω′ → [0,∞) a function satisfying the FKG lattice condition. For each
η ∈ Ω′, let µη be the probability measure on Ω defined by

µη[f ] :=
1

Zη

∑
ω∈Ω, X(ω,η)>0

f(ω)X(ω, η); Zη :=
∑

ω∈Ω, X(ω,η)>0

X(ω, η)

whenever {ω ∈ Ω : X(ω, η) > 0} is countable and Zη ∈ (0,∞). Then, for any η, η′ ∈ Ω′

making µη and µη′ well-defined, we have

(η ⪯ η′) =⇒ (µη ⪯stoch µη′).

Proof. Choose η and η′ making µη and µη′ well-defined and with η ⪯ η′. Let Ω̃ := Ω×{η, η′}.
This is a distributive lattice on which X satisfies the FKG lattice condition. Thus, the
probability measure µ defined by

µ[f ] :=
1

Zη + Zη′

∑
(ω,η′′)∈Ω̃, X(ω,η′′)>0

f(ω, η′′)X(ω, η′′)

satisfies the FKG inequality. In particular, Lemma 2.4 implies that for any bounded
increasing function f : Ω → R, we have

µη[f ] = µ[f(ω)|Ω× {η}] ≤ µ[f(ω)] ≤ µ[f(ω)|Ω× {η′}] = µη′ [f ].

This proves the desired stochastic domination. □

2.3. The Ising model. Throughout this subsection, G = (V,E) denotes a fixed finite
simple graph. We also fix a family of coupling constants J ∈ [0,∞)E. Rather than going
for a soft landing, we immediately introduce the Fortuin–Kasteleyn coupling, then derive
the Ising model as a marginal of this measure that is initially constructed on the product
space.

Definition 2.17 (Fortuin–Kasteleyn coupling). Let µFK
G,J denote the probability measure

on (σ, ω) ∈ {±1}V × {0, 1}E defined by

µFK
G,J [{(σ, ω) = (σ̄, ω̄)}] = 1

ZIsing
G,J

1{σ̄⊥ω̄}(e
J − e−J)ω̄(e−J)(1−ω̄). (5)

Here σ̄ ⊥ ω̄ means that σ̄ is constant on each connected component of (V, ω̄), and we recall
that ab :=

∏
x∈X abxx when a and b are functions defined on some finite set X. The constant

ZIsing
G,J is the partition function.

Having defined this coupling, 2 + 2 = 4 questions immediately arise: we can study
the two marginals of this product measure, as well as the two conditional measures after
conditioning on the other element.
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We start with the first marginal. Fix some spin configuration σ ∈ {±1}V. In order to
calculate the weight of σ, we must sum the weight of the pair (σ, ω) given by Equation (5)
over all percolation configurations ω ∈ {0, 1}E which satisfy σ ⊥ ω. We view this sum as a
product over edges in xy ∈ E. The factor corresponding to each edge xy ∈ E is:

1{σxσy=+1}(e
Jxy − e−Jxy) + e−Jxy = eJxyσxσy .

Indeed, if σxσy = −1 then the edge is closed so that the only contribution is e−Jxy , while if
σxσy = +1 the edge can be both open and closed so that both terms contribute. We have
now proved the following lemma.

Lemma 2.18 (Definition of the Ising model). Let µIsing
G,J denote the first marginal of µFK

G,J ,
that is, the probability measure on σ ∈ {±1}V defined by

µIsing
G,J [{σ = σ̄}] := µFK

G,J [{σ = σ̄}] = 1

ZIsing
G,J

e−HIsing
G,J (σ̄); ZIsing

G,J :=
∑

σ∈{±1}V
e−HIsing

G,J (σ),

where HIsing
G,J : {±1}V → R is the Hamiltonian of the Ising model defined by

HIsing
G,J (σ) := −

∑
xy∈E

Jxyσxσy.

We also write ⟨ · ⟩IsingG,J := µIsing
G,J [ · ] for the expectation functional.

For the second marginal of µFK
G,J , we observe that σ only appears in the weight of each

configuration in Equation (5) through the indicator 1{σ̄⊥ω̄}. Thus, in order to calculate the
weight of each configuration ω, we must simply add an extra factor f(ω) which counts the
number of configurations σ that are consistent with ω. It is easy to see that this number is
equal to 2k where k is the number of connected components of the graph (V, ω). Indeed,
by definition of σ ⊥ ω, we observe that σ can assign precisely two spins to each connected
component of this graph, independently of the spin value at other connected components.
We have now proved the following lemma.

Lemma 2.19 (Definition of the random-cluster model). For any ω ∈ {0, 1}E, we let k(ω)
denote the number of connected components of the graph (V, ω). For q ∈ (0,∞), let µRCM

G,J,q

denote the probability measure on ω ∈ {0, 1}E defined by

µRCM
G,J,q[{ω = ω̄}] := 1

ZRCM
G,J,q

qk(ω̄)(eJ − e−J)ω̄(e−J)(1−ω̄). (6)

Then for q = 2, the measure µRCM
G,J,2 is the second marginal of µFK

G,J , and ZRCM
G,J,2 = ZIsing

G,J .

Before making some interesting observations about these two measures, we finish answer-
ing our four questions by describing the conditional distributions.

Lemma 2.20 (Conditional laws in the Fortuin–Kasteleyn coupling). The following are
true.

• The law of σ conditional on ω. The law of σ in µFK
G,J [ · |{ω = ω̄}] consists in

flipping an independent fair coin for each connected component of (V, ω̄) in order
to determine the spin at each vertex.

• The law of ω conditional on σ. For fixed σ, define p(σ) ∈ [0, 1]E by

p(σ)xy = 1{σxσy=+1}
eJxy − e−Jxy

eJxy
. (7)

Then the law of ω in µFK
G,J [ · |{σ = σ̄}] is precisely equal to µedge

G,p(σ).
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Proof. The proofs of both statements are already subtly contained in the above reasoning.
For the first statement, observe that the conditional law of σ is uniformly random in the set
of configurations of σ̄ ∈ {±1}V that satisfy σ̄ ⊥ ω̄. For the second statement, we already
observed above that to compute the weight of a particular configuration for σ in µFK

G,J , we
could decompose over the edges xy ∈ E. If σxσy = −1 then that edge is always closed; if
σxσy = +1 then the relative weights of being open and closed are given by eJxy − e−Jxy

and e−Jxy respectively, leading to the opening probability given by Equation (7). □

While the Fortuin–Kasteleyn coupling does not satisfy the FKG inequality, its two
marginals and its two conditional measures do satisfy this inequality. This is obvious for
the two conditional measures, and therefore we only state precise results for the marginals.

Lemma 2.21 (FKG inequalities). The following hold true.
• The FKG lattice condition is satisfied by {0, 1}E → [0,∞), ω 7→ qk(ω) for q ∈ [1,∞).
• The measure µIsing

G,J satisfies the FKG inequality.
• The measure µRCM

G,J,q satisfies the FKG inequality for q ∈ [1,∞).

Proof. • It is easy to see that it suffices to check the Holley criterion, that is, the
FKG lattice condition but only for configurations ω, η ∈ {0, 1}E which differ in only
two places. The verification of the Holley criterion is a classical exercise that we
leave to the reader.

• By the basic properties of the FKG lattice condition, it suffices to prove the
FKG lattice condition for σ 7→ eJxyσxσy . But this map may just be written
σ 7→ e−Vxy(σy−σx) where Vxy is the convex function Vxy(a) = Jxy(a

2 − 2)/2, so that
the basic properties yield the result.

• Again, by the basic properties, our strategy is again to decompose the weight on
the right in Equation (6) into factors, and to then prove the FKG lattice condition
for each factor. For the factor qk(ω) this follows from the first statement in this
lemma; the other factors depend on one edge at a time so that the basic properties
yield the result. □

Until now we have treated the two marginals of the Fortuin–Kasteleyn coupling separately.
The following lemma uses the coupling to derive an essential relation between those two
marginals. For any A ⊂ V, we write σA :=

∏
x∈A σx. Let A∆B denote the symmetric

difference of the sets A and B. This means that σAσB = σA∆B. Let EA ⊂ {0, 1}E denote
the event that each connected component of (V, ω) intersects an even number of vertices in
A. Notice that EA is an increasing event, and that EA ∩ EB ⊂ EA∆B.

Lemma 2.22. We have ⟨σA⟩Ising = µRCM
2 [EA] for any A ⊂ V.

Proof. We calculate the expectation of σA in the measure µFK
G,J . Conditioning on ω, we

observe that:
• If ω ∈ EA, then σA = 1 almost surely,
• If ω ̸∈ EA, then we may find a connected component of (V, ω) intersecting an odd

number of vertices in A, and in this case the flip symmetry of the coins tells us that
the conditional expectation of σA is zero.

This implies the lemma. □

This representation of ⟨σA⟩Ising allows us to prove some important inequalities.

Theorem 2.23 (Griffiths inequalities). (1) The following hold true for any A,B ⊂ V:
• First Griffiths inequality: we have ⟨σA⟩Ising ≥ 0;
• Second Griffiths inequality: we have ⟨σAσB⟩Ising ≥ ⟨σA⟩Ising⟨σB⟩Ising.

(2) The following hold true for any K,K ′ ∈ [0,∞)E:
• ⟨e

∑
xy∈E Kxyσxσy⟩Ising ≥ 1;
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• ⟨e
∑

xy∈E(Kxy+K′
xy)σxσy⟩Ising ≥ ⟨e

∑
xy∈E Kxyσxσy⟩Ising⟨e

∑
xy∈E K′

xyσxσy⟩Ising.
(3) Consider the lattice [0,∞)E. The map

[0,∞)E → [0,∞), J 7→ ZIsing
J

satisfies, for any J,K,K ′ ∈ [0,∞)E, the following two inequalities:
• ZIsing

J+K ≥ ZIsing
J ,

• ZIsing
J+K+K′ · ZIsing

J ≥ ZIsing
J+K · ZIsing

J+K′.
In particular, this map is monotone in J and satisfies the FKG lattice condition.

Proof. (1) For the first Griffiths inequality, simply observe that the expectation may be
expressed as a probability through the previous lemma. Now focus on the second
Griffiths inequality. We have

⟨σAσB⟩Ising = µRCM
2 [EA∆B] ≥ µRCM

2 [EA ∩ EB]
≥ µRCM

2 [EA]µRCM
2 [EB] = ⟨σA⟩Ising⟨σB⟩Ising.

The first inequality is due to inclusion of events; the second inequality is the FKG
inequality for the random-cluster model with q = 2.

(2) Develop the exponentials and compare terms using the Griffiths inequalities.
(3) Apply the previous corollary, observing that ZIsing

J+K = ZIsing
J ⟨e

∑
xy∈E Kxyσxσy⟩IsingJ .

□

Lemma 2.24. If q ≥ 1, then the random-cluster model µRCM
G,J,q is monotone in J .

Proof. Apply Lemma 2.16, observing that the map

(ω, J) 7→ qk(ω)(eJ − e−J)ω(e−J)(1−ω)

satisfies the FKG lattice condition. □
comment May want
to state more refined
relations here; see the
comments in the TeX
file.

2.4. Boundary conditions and the infinite-volume limit. Phase transitions usually
occur on infinite graphs such as the hypercubic lattice Zd, but we have only considered
finite graphs thus far. Throughout this subsection, G = (V,E) denotes a locally finite
countable simple graph. We use the symbol ⊂⊂ to say that a set is a finite subset of another
set. A finite subset Λ ⊂⊂ V is called domain. Although the ideas in this subsection apply
in a greater generality, we shall only consider models whose spins are associated to the
vertices V. Thus, we generally consider the lattice Ω = RV endowed with the product
σ-algebra F . Write P(Ω,F) for the set of probability measures on this measurable space.
All measures in this section are viewed as measures in P(Ω,F). For any Λ ⊂ V, we write
FΛ := σ(σx : x ∈ Λ). An object is called locally measurable if it is measurable with respect
to FΛ for some domain Λ.

2.4.1. Monotonicity. The FKG inequality often implies two notions of monotonicity called
monotonicity in boundary conditions and monotonicity in domains. Rather than stating
the results in the largest generality possible, we simply state them for the Ising model in a
transparent way, making it straightforward to apply similar ideas to other models.

For a fixed domain Λ and for some spin configuration η ∈ {±1}V, we let

ΩG,Λ,η := {σ ∈ {±1}V : σ|V\Λ = η|V\Λ}.

Notice that ΩG,Λ,η is a countable distributive lattice (in fact, it is even finite), so that the
theory developed above applies to it. For J ∈ [0,∞)E, we also define

HIsing
G,J,Λ(σ) := −

∑
xy∈E(Λ)

Jxyσxσy,
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where E(Λ) ⊂ E denotes the set of edges having at least one endpoint in Λ. We define

µIsing
G,J,Λ,η[f ] :=

1

ZIsing
G,J,Λ,η

∑
σ∈ΩG,Λ,η

e−HIsing
G,J,Λ(σ)f(σ) ZIsing

G,J,Λ,η :=
∑

σ∈ΩG,Λ,η

e−HIsing
G,J,Λ(σ).

We often drop G and J from the notations. Notice that HIsing
Λ satisfies the FKG lattice

condition and that µIsing
Λ,η ∈ P(Ω,F) satisfies the FKG inequality.

Remark 2.25. Notice that the definition of µIsing
Λ,η would be the same if we replaced E(Λ)

in the definition of the Hamiltonian by a larger, finite set of edges, since those extra terms
would only depend on η. Those extra terms would thus be constant, and not contribute to
the relative probability of each configuration in ΩΛ,η.

Lemma 2.26 (Monotonicity in boundary conditions). For any domain Λ ⊂⊂ V and
boundary conditions η, η′ ∈ {±1}V, we have

(η ≤ η′) =⇒ (µIsing
Λ,η ⪯stoch µIsing

Λ,η′ ).

Proof. The proof is essentially identical to that of Lemma 2.16. □

Sometimes there exist special boundary conditions, which are in a certain sense minimal
or maximal. In that case, the FKG inequality may be leveraged to obtain monotonicity in
domains.

Lemma 2.27 (Monotonicity in domains). Let σ− denote the unique spin configuration
with σ− ≡ −1. Then for any Λ,Λ′ ⊂⊂ V, we have

(Λ ⊂ Λ′) =⇒ (µIsing
Λ,σ− ⪯stoch µIsing

Λ′,σ−).

Proof. Notice that µIsing
Λ,σ− = µIsing

Λ′,σ− [ · |ΩΛ,σ− ]. Since the conditioning event is a decreasing

subset of ΩΛ′,σ− , the FKG inequality for µIsing
Λ′,σ− immediately implies the result. □

2.4.2. Abstract properties of finite-domain measures. The objective of the remainder of this
section is to construct and describe the infinite-volume limit of families of finite-domain
measures.

Definition 2.28 (Properties of families of finite-domain measures). Consider a family
(µΛ)Λ⊂⊂V ⊂ P(Ω,F) of finite-domain measures.

• Monotonicity in the domain. We call the family monotone in the domain if

∀Λ,Λ′ ⊂⊂ V, (Λ ⊂ Λ′) =⇒ (µΛ ⪯stoch µΛ′).

• Tight. We call the family tight if

∀x ∈ V, lim
K→∞

sup
Λ⊂⊂V

µΛ[{|σx| ≥ K}] = 0.

• Boundary Markov property. Consider a domain Λ ⊂⊂ V and its partition (Λi)i
into connected components. We say that the family satisfies the boundary Markov
property if for any Λ and for any family of FΛi-measurable functions fi, we have

µΛ[
∏

i fi] =
∏

i µΛi [fi].

The fourth property is only defined when the underlying graph G embedded in Rd in a
way that is symmetric under the action of some full-rank lattice L ⊂ Rd.

• Shift-invariance. Let L ⊂ Rd denote some full-rank lattice. For θ ∈ L and for
any observable f , let θf denote the observable defined by (θf)(σ) = f(σ ◦ θ). The
family (µΛ)Λ⊂⊂Zd is called L-invariant or shift-invariant if µΛ[f ] = µθΛ[θf ] for any
Λ ⊂⊂ Zd, for any θ ∈ L, and for any observable f .
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2.4.3. The infinite-volume limit: construction. If a family of finite-domain measures is
monotone in the domain and tight, then we can make sense of an infinite-volume limit.
However, for this limit to make formal sense, we must first introduce the appropriate
topologies on P(Ω,F).

Definition 2.29 (The strong topology and the weak topology). An observable f is called
local if it is FΛ-measurable for some Λ ⊂⊂ V. It is additionally called continuous if it may
be written f(σ) = f ′(σ|Λ) for some continuous function f ′ : RΛ → C.

• The strong topology. The strong topology is the coarsest topology on P(Ω,F)
making the map µ 7→ µ[f ] continuous for any bounded local observable f .

• The weak topology. The weak topology is the coarsest topology on P(Ω,F)
making µ 7→ µ[f ] continuous for any bounded continuous local observable f .

In practice, when a sequence (µn)n tends to some limit µ in the weak topology, it can
often also be proved that the limit tends to the same limit in the strong topology. The
distinction between the two topologies is not really of great interest to us.

Theorem 2.30 (Existence of the infinite-volume limit). If a family of finite-domain
measures (µΛ)Λ is monotone in the domain and tight, then there is a unique weak limit
point µ ∈ P(Ω,F) such that µΛ → µ as Λ ↗ V, that is, such that µΛn → µ in the weak
topology for any sequence (Λn)n such that any vertex x ∈ V belongs to Λn for sufficiently
large n.

Proof. Let ∆ ⊂⊂ V denote a fixed domain. Claim that the restriction of µΛ to F∆

converges weakly to some probability measure ν∆ on R∆ as Λ ↗ V. The claim implies the
theorem as follows: if the claim is true, then the family (ν∆)∆ extends to a unique measure
ν ∈ P(Ω,F) by the Kolmogorov extension theorem, and we may choose µ = ν.

If f is any bounded increasing F∆-measurable observable, then µΛ[f ] is increasing in
Λ, and therefore tends to some limit ν∆[f ]. It is a straightforward exercise to see that the
family (ν∆[f ])f extends to a probability measure ν∆ on R∆, and that µΛ[g] → ν∆[g] as
Λ ↗ V for any bounded continuous F∆-measurable observable g. □

2.4.4. The infinite-volume limit: ergodicity.

Definition 2.31 (Shift-invariance and ergodicity). Suppose that the graph G is embedded
in Rd in a way that is symmetric under the action of some full-rank lattice L ⊂ Rd. Let
µ ∈ P(Ω,F) denote a probability measure.

• Shift-invariance. The measure µ is called shift-invariant or L-invariant if µ[f ] =
µ[θf ] for any observable f and for any θ ∈ L.

• Ergodicity. The measure µ is called ergodic or L-ergodic if it satisfies a zero-one
law on any event A which is L-invariant in the sense that 1A(σ) = 1A(σ ◦ θ) for
any σ ∈ Ω and θ ∈ L.

Theorem 2.32 (Ergodicity of the infinite-volume limit). Suppose that a family of finite-
domain measures (µΛ)Λ has the four properties of Definition 2.28 (that is, it is monotone
in the domain, tight, has the boundary Markov property, and is L-invariant). Then there is
a unique weak limit point µ ∈ P(Ω,F) such that µΛ → µ as Λ ↗ V, and this limit point µ
is L-ergodic.

todo Add remark
about adding i.i.d. ran-
domness.Proof. Existence of the limit point µ was proved in theorem 2.30, and this limit is L-invariant

by symmetry. It suffices to prove the zero-one law for shift-invariant events. Without loss
of generality, G is the square lattice graph Zd.

Fix a domain ∆0 ⊂⊂ V, an increasing F∆0-measurable event E0, and a nontrivial shift
θ ∈ L \ {0}. Define ∆n := θn∆0, and let En denote the increasing F∆n-measurable event
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such that 1En(σ) = 1E0(σ ◦ θn). Let p := µ[E0], and notice that µ[En] = p for any n ∈ Z
due to shift-invariance.

We first claim that the distribution of (1E0 ,1En) in µ tends to the distribution of two
independent Bernoulli random variables (with parameter p) as n → ∞. To see that this
is true, let Bm := [−m,m]d ∩ V, and let pm := µBm [E0]. Fix m0 ∈ Z≥1 so large that
∆0 ⊂ Bm0 . Notice that:

• By monotonicity in domains, we have pm → p as m → ∞,
• By monotonicity in domains and the boundary Markov property, we have, for
m0 ≤ m < n/8,

µ[E0 ∩ En] ≥ µBm∪θnBm [E0 ∩ En] = p2m,

• Similarly, for m0 ≤ m < n/8,

µ[E0 ∪ En] ≥ µBm∪θnBm [E0 ∪ En] = 1− (1− pm)2.

Thus, we get

lim inf
n→∞

µ[E0 ∩ En] ≥ p2; lim inf
n→∞

µ[E0 ∪ En] ≥ 1− (1− p)2.

But since µ[E0] = µ[En] = p, it is immediate that the limits in this display exist and that
the inequalities are in fact equalities. This proves the claim.

In fact, by similar reasoning, it is easy to see that for fixed n ∈ Z≥1, the distribution
of (1E0 ,1Ek

, . . . ,1E(n−1)k
) tends to the distribution of n independent Bernoulli trials with

parameter p as k → ∞.
In order to derive a contradiction, we suppose that A is an L-invariant event such that

0 < µ[A] < 1. Then µ[ · |A] is well-defined and not equal to µ. In particular, one may choose
∆0 and E0 such that p′ := µ[E0|A] ̸= µ[E0] =: p. Since A is L-invariant, this means that
µ[Ek|A] = p′ for all k. This is clearly inconsistent with our knowledge on the asymptotic
distribution of (1E0 ,1Ek

, . . . ,1E(n−1)k
). More precisely, if we have an arbitrary number of

independent Bernoulli trials with fixed parameter p, then we cannot change the conditional
expectation of all those trials to some fixed p′ ̸= p by conditioning on a single event of fixed
probability µ[A]. □

2.4.5. The infinite-volume limit: FKG inequality.

Theorem 2.33 (FKG inequality of the infinite-volume limit). Suppose given a family of
finite-domain measures (µΛ)Λ which all satisfy the FKG inequality. Suppose moreover that
µ ∈ P(Ω,F) is some weak subsequential limit of this family as Λ ↗ V. Then µ satisfies
the FKG inequality.

Proof. Notice first that µ[fg] ≥ µ[f ]µ[g] if f and g are bounded increasing continuous local
functions by definition of the weak topology and the FKG inequality for each finite-domain
measure µΛ. The dominated convergence theorem implies that this inequality extends to
bounded increasing local functions.

Using the dominated convergence theorem again, it is easy to see that this inequality
extends to bounded increasing functions which may be written as pointwise limits of
bounded increasing local functions. This already includes all bounded increasing functions
that we typically encounter: for example, the observable

1{the subgraph induced by {σ ≥ 1} contains an infinite cluster}

is of this type. To prove that the inequality may be extended to all bounded increasing
functions one should apply Strassen’s theorem [Str65], we also refer to [GHM01, Theorem 4.6]
for details. □
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2.4.6. Application to the Ising model. Consider G = Zd, and let J ≡ β ∈ [0,∞). Consider

µΛ := µIsing
G,β,Λ,σ− .

It is easy to see that the family of finite-domain measures (µΛ)Λ satisfies the four criteria of
Definition 2.28; in particular, tightness is obvious because each spin belongs to {±1}, and
the boundary Markov property is easy to establish once observing that each interaction term
in the Hamiltonian involves the value of σ at the two endpoints of an edge. In particular,
µΛ → µ− in the weak topology for some Zd-ergodic measure µ− ∈ P(Ω,F) as Λ ↗ V.
Moreover, since each spin takes values in the discrete set {±1}, it is easy to see that the
convergence in fact occurs in the strong topology. Each measure µΛ satisfies the FKG
inequality, and therefore µ− satisfies the FKG inequality as well.

2.5. Percolation: uniqueness of the infinite cluster. We now explain the Burton–
Keane argument. The Burton–Keane argument is a robust argument in statistical mechanics.
It does not rely on the FKG inequality, but rather on another notion called insertion
tolerance. We shall phrase the argument in terms of site percolation.

Definition 2.34 (Insertion tolerance). Consider a site percolation measure µ. We say that
µ has insertion tolerance if, for any domain Λ ⊂⊂ V and for any A ∈ FV\Λ of positive
probability,

µ[A ∩ {all sites in Λ are open}] > 0.

Theorem 2.35 (Burton–Keane). Suppose that G is a connected locally finite simple graph
embedded in Rd in a way that is invariant under the action of some lattice L ⊂ Rd of rank
d. If µ is an L-ergodic site percolation measure on G with insertion tolerance, then the
number of infinite connected components is almost surely equal to either zero or one.

Proof. Without loss of generality, G is the square lattice graph Zd. By ergodicity, we may
find some N ∈ {∞, 0, 1, . . . } such that the number of infinite connected components is
almost surely equal to N . Our goal is to prove that N ≤ 1.

Suppose first that 1 < N < ∞. Let Bn := [−n, n]d ∩ V, and let ∂Bn denote the set
of vertices in V \ Bn which are adjacent to Bn. Then for n ∈ Z≥1 sufficiently large, the
event A that all infinite connected components intersect ∂Bn has a positive probability.
Moreover, this event is FV\Bn

measurable. By insertion tolerance,

µ[A ∩ {all sites in Bn are open}] > 0.

But A ∩ {all sites in Bn are open} is included in the event that there exists at most one
infinite connected component, contradicting this number is almost surely equal to N > 1.

Suppose now that N = ∞. Then for n ∈ Z≥1 sufficiently large, the event that ∂Bn

intersects at least three infinite connected components, is strictly positive. For any shift
θ ∈ L, write T (θ) for the event

T (θ) := {at least three infinite (ω \ θBn)-components intersect θ∂Bn}
∩ {all sites in θBn are open}.

If the event T (θ) occurs then θBn is called a trifurcation box, because it may be thought
of a box where an infinite cluster splits into three branches. By insertion tolerance,
p := µ[T (0)] > 0, and by shift-invariance, µ[T (θ)] = p > 0 for any θ ∈ L.

In the final part of the proof, we derive a geometric contradiction from the fact that
infθ∈L µ[T (θ)] > 0. First, let L′ ⊂ L be a full-rank sublattice such that for any θ ∈ L′ \ {0},
the boxes Bn and θBn do not have a point in common. For m ∈ Z≥0 very large, let

#Bm := |{θ ∈ L′ : θBn ⊂ Bm}|; #Tm := |{θ ∈ L′ : θBn ⊂ Bm and T (θ) occurs}|;

Since µ[#Tm] = p ·#Bm, we know that µ[{#Tm ≥ p ·#Bm}] > 0.
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Figure 9. The geometric contradiction in the Burton–Keane argument

For the contradiction, we prove that {#Tm ≥ p ·#Bm} = ∅ for m sufficiently large. The
argument is illustrated by Figure 9. We may view the boxes θBn ⊂ Bm such that θ ∈ L′

and such that T (θ) occurs as the vertices of a finite forest (in the graph sense) with a degree
of at least three. Finite forests have the property that the number of leafs equals at least
the number of vertices having degree three or higher. The leafs, in this case, correspond to
the branches of the infinite connected components pointing through the boundary of Bm.
Writing ω′ for the set ω with all the trifurcation boxes θBn ⊂ Bm removed, it can be proved
rigorously that ω′ has at least #Tm connected components intersecting ∂Bm. In particular,
#Tm ≤ |∂Bm|, and therefore {#Tm ≥ p ·#Bm} = ∅ as soon as |∂Bm| < p ·#Bm. But
the left hand side grows as md−1 as m → ∞, while the right hand side grows as md. This
makes the inequality true for m sufficiently large. □

2.6. Percolation: planar graphs. The Burton–Keane argument is extremely robust: it
works in any dimension and does not even rely on the FKG inequality. The BKT transition
is a two-dimensional phenomenon, and one key ingredient for deriving it is a two-dimensional
percolation result that we call the noncoexistence theorem. The two subsections following
this one are dedicated to deriving this theorem under slightly different assumptions.

By a planar graph, we mean triple G = (V,E,F) where (V,E) is a simple graph
embedded in the plane R2 ∼= C in such a way that no two edges cross. All planar graphs
in this text are tacitly assumed to be locally finite, meaning that all vertices have a finite
degree and that compact subsets of the plane contain finitely many vertices. The letter F
denotes the set of faces. If G is infinite (such as the square lattice graph), then it is possible
that F does not contain a distinguished outer face. The dual graph G∗ = (F,E∗,V) is
defined as before.

Consider a deterministic site percolation configuration ω ∈ {0, 1}V. Planarity imposes
certain constraints on the geometry of the pair (ω, ωc). For example, it is impossible that a
rectangle is crossed horizontally by ω and vertically by ωc; see Figure 10. We say that this
event cannot occur by planarity or due to planarity constraints. One may think informally
of the noncoexistence theorem as an extension of the example in Figure 10 to the infinite
volume. Of course, there is no such thing as “crossing an infinite rectangle”, and therefore
we must slightly change the events under consideration.
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Figure 10. Left: It is impossible that the rectangle is crossed from left to
right by an open (yellow) path, and simultaneously from top to bottom by
a closed (blue) path. In this case the horizontal yellow crossing is present,
thus barring the existence of a vertical blue crossing. Right: This event is
sometimes impressionistically drawn like this.

Figure 11. Adaptation to edge percolation of Figure 10

Definition 2.36 (Coexistence). We say that two percolation configurations ω and η coexist
when both percolate (that is, when both contain an infinite connected component). This
definitions makes sense for both site- and edge percolation configurations.

While the results are first stated in terms of site percolation, they also apply to edge
percolation. The natural dual object to a site ω is the complement ωc of the set of open
sites. The natural dual object to an edge percolation ω, is the dual percolation ω†.

Definition 2.37 (Dual edge percolation). For any edge percolation ω ∈ {0, 1}E, let
ω† ∈ {0, 1}E∗ denote the dual percolation, defined by ω† = {xy∗ ∈ E : xy ̸∈ ω}.

2.7. Percolation: the noncoexistence theorem in 2D (Zhang’s argument).

Definition 2.38 (Planar graphs with a rotation symmetry). For α ∈ R, let Rα denote the
rotation of the plane Rd ∼= C by an angle of α. An Rα-invariant planar graph is a connected
locally finite planar graph G = (V,E) embedded in the plane, and which is invariant under
the action of Rα. Just like for shift-invariance, a measure µ is called Rα-invariant when
µ[f(σ ◦Rα)] = µ[f(σ)] for any observable f .

Theorem 2.39 (Noncoexistence theorem via Zhang’s argument). Consider an Rα-invariant
planar graph G for some α ∈ {π/2, 2π/3}. There does not exist an Rα-invariant site
percolation measure µ such that:

• µ-almost surely, there is exactly one open infinite cluster,
• µ-almost surely, there is exactly one closed infinite cluster,
• µ satisfies the FKG inequality.

Example 2.40 (Independent percolation). The theorem is illustrated by the following
application. Let G denote the triangular lattice, and let µ denote the percolation measure
which flips an independent fair coin for each vertex to decide if it is open or closed. See
Figure ?? for a sample from this measure. In this figure, the hexagons having an open todo Add figure.

vertex at its centre are coloured blue; the hexagons corresponding to closed vertices are
yellow. The measure µ is ergodic and satisfies the FKG inequality (see Theorems 2.32
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Figure 12. The event C(open,Left) in the proof of Theorem 2.39

and 2.33). The Burton–Keane argument implies that there is at most one infinite open
component, and at most one infinite closed component. Since open and closed vertices play
the same role, there are two possibilities:

• There is a one infinite open component and one infinite closed component,
• There are no infinite components of either type.

The noncoexistence theorem (Theorem 2.39) rules out the first possibility. In Figure ??, todo Add figure.

this means that all clusters are finite. Thus, every blue cluster is surrounded by yellow
hexagons, and vice versa.

Proof of Theorem 2.39. For notational simplicity, we suppose that G is the square lattice
graph Z2 and that α = π/2. We assume the existence of µ and aim for a contradiction.
The main ingredients of the proof are:

• The planarity says that open and closed clusters do not cross (see below for details),
• The FKG inequality,
• The square root trick, which says that for any family of increasing events (Ak)1≤k≤n,

maxk µ[Ak] ≥ 1− n
√
1− µ[∪kAk].

The square root trick is an immediate corollary of the FKG inequality.
Fix ε := 1/7. For fixed r ∈ Z≥0, we define:

B(r) := [−r, r]2 ∩ Z2 ⊂ V; ∂B(r) := {x ∈ V \B(r) : x is adjacent to B(r)}.

The set ∂B(r) may naturally be written as a disjoint union of its four sides, which we
denote Right, Top, Left, and Bottom in the obvious way. Write Sides for the set containing
those four sets.

We now proceed as follows.
• By existence of the infinite clusters, we may choose r so large that the infinite open

and the infinite closed cluster intersect B(r) with a probability of at least 1− ε4.
Define

I(open) := {∂B(r) ↔ ∞};
I(closed) := {ω : 1− ω ∈ I(open)}.

• For any S ∈ Sides, write

C(open, S) := {S ↔V\B(r) ∞};
C(closed, S) := {ω : 1− ω ∈ C(open, S)},

see Figure 12. Notice that I(open) := ∪SC(open, S). By Rα-invariance of µ, the
four events in this union have the same probability, and therefore the square root
trick implies that, for any side S ∈ Sides, we have

µ[C(open, S)] ≥ 1− ε = 1− 1
7 .

Identical reasoning applies to C(closed, S).
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Figure 13. The event E in the proof of Theorem 2.39. Open paths are
solid, closed paths are dashed. All six paths are infinitely long and avoid
B(r). It is impossible that the three open paths belong to a single open
cluster, and that simultaneously all closed paths belong to a single closed
cluster; this would contradict the planarity of the plane.

• By a union bound, the event

E := ∩S∈{Right,Top,Left}(C(open, S) ∩ C(closed, S))

occurs with a probability of at least 1− 6
7 > 0.

However, it is easy to see that if the event E occurs, then there must be at least two
infinite open clusters, or at least two infinite closed clusters (see Figure 13). Almost sure
uniqueness of the infinite clusters thus implies that µ[E] = 0, contradicting that µ[E] > 1

7 .
The proof is the same in the case of α = 2π/3 (for example, when G is the triangular

lattice); the only difference is that one defines B(r) to be a large triangle rather than a
large square. □

2.8. Percolation: the noncoexistence theorem in 2D (general argument). This
subsection is included for general culture only. Theorem 2.42 was originally used in the
original proof of height function delocalisation in [Lam22], but the simplified proof in these
notes relies on the simpler Zhang argument (Theorem 2.39) instead.

Definition 2.41 (Doubly periodic planar graphs). A doubly periodic planar graph is a
connected locally finite planar graph G = (V,E) embedded in the plane, and which is
invariant under the action of some lattice isomorphic to Z× Z, see Figure ??. todo Add figure.

Theorem 2.42 (Noncoexistence theorem). Consider a doubly periodic planar graph G
invariant under the action of some lattice L ∼= Z× Z. There does not exist an L-invariant
site percolation measure µ such that:

• µ-almost surely, there is exactly one open infinite cluster,
• µ-almost surely, there is exactly one closed infinite cluster,
• µ satisfies the FKG inequality.

Proof. Let µ denote the measure whose existence we aim to contradict. The proof relies on
four ingredients:

• Qualitative properties of infinite clusters coming from shift-invariant measures,
• Duality relations for box crossings (described below),
• The intermediate value theorem (and discrete versions of it),
• The square root trick, which says that for any family of increasing events (Ak)1≤k≤n,

maxk µ[Ak] ≥ 1− n
√
1− µ[∪kAk].

The square root trick is an immediate corollary of the FKG inequality.
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Figure 14. Proof of the preliminary observations

For notational simplicity, we suppose that G is the square lattice graph Z2 and that
L = Z2. For any sets A,B, S ⊂ R2, let

{A ↔ B}; {A ↔S B}; {A ↔ ∞}
denote respectively: the event that there is an open path from a vertex in A to a vertex in
B, and the event that there is an open path from A to B which is entirely contained in S,
and the event that there is an open path starting from A that visits an infinite number
of sites. Let R = [0, i]× [0, j] denote a rectangle whose four sides are denoted Right, Top,
Left, and Bottom. The following duality relations are important:

{Top ↔R Bottom} ∩ {ω : 1− ω ∈ {Left ↔R Right}} = ∅;

{Left ↔R Right} ∩ {ω : 1− ω ∈ {Top ↔R Bottom}} = ∅.

Define
v(i, j) := µ[{Top ↔R Bottom}]; h(i, j) := µ[{Left ↔R Right}].

Notice that these probabilities would be invariant under shifting the rectangle R. Throughout
this proof we write Bx(r) := [x1 − r, x1 + r]× [x2 − r, x2 + r], and think of it as a ball of
radius r ∈ Z≥0 centred at x ∈ Z2. Also set B(r) := B(0,0)(r).

Claim (Preliminary observations). All of the following are true:
• v(i, j) is increasing in i and decreasing in j,
• h(i, j) is decreasing in i and increasing in j,
• Uniqueness of the infinite open cluster implies that

lim
i→∞

v(i, j) = 1; lim
j→∞

h(i, j) = 1.

• Uniqueness of the infinite closed cluster and the duality relations imply that

lim
j→∞

v(i, j) = 0; lim
i→∞

h(i, j) = 0.

Proof of the preliminary observations. The first two items are obvious by inclusion of events.
We elaborate on the other two by proving that limi→∞ v(i, j) = 1. Fix j and ε > 0, we aim
to prove that v(i, j) ≥ 1− 3ε for sufficiently large i. See Figure 14 for an illustration.

Fix r so large that µ[{B(r) ↔ ∞}] ≥ 1− ε. Set x± := (0,±(j + r)), and note that

µ[{Bx+(r) ↔ Bx−(r)}] ≥ µ[{Bx+(r) ↔ ∞} ∩ {Bx−(r) ↔ ∞}] ≥ 1− 2ε.

On the left, we use that there is one infinite cluster almost surely; if the two balls are
connected to infinity, then they must be connected to each other. We may now pick r′ so
large that

µ[{Bx+(r) ↔B(r′) Bx−(r)}] ≥ 1− 3ε.

But if this event occurs, then clearly the rectangle [−r′, r′] × [0, j] is crossed vertically,
proving that v(2r′, j) ≥ 1− 3ε. This proves the preliminary observations.



THE BKT TRANSITION AT THE CRITICAL POINT 33

Figure 15. Proof of the claim

If R is very tall, then we expect that it is easier to cross R horizontally than vertically.
If R is very wide, then we expect the vertical crossing to be easier. Thus, by continuously
varying the aspect ratio of R and using the intermediate value theorem, there should be
some special point where crossings in the two directions have an equal probability. To
formalise this idea, we let ji denote (for each i) the unique integer such that

v(i, ji) ≥ h(i, ji); v(i, ji + 1) < h(i, ji + 1).

The intermediate value theorem and the preliminary observations imply that ji is well-
defined and that ji → ∞ as i → ∞. The definition of ji implies immediately that µ satisfies
the following statement:(

lim sup
i→∞

(
h(i, ji) ∨ v(i, ji + 1)

)
= 1

)
=⇒

(
lim sup
i→∞

((
v(i, ji) ∧ h(i, ji)

)
∨
(
v(i, ji + 1) ∧ h(i, ji + 1)

))
= 1

)
.

To conclude the proof of the theorem, we derive the following contradictory assertion.

Assertion. As i, j → ∞ (in the sense that i ∧ j → ∞), we have:
• h(i, j) ∨ v(i, j + 1) → 1,
• h(i, j) ∧ v(i, j) → 0.

We only prove the first item; the second item follows by the same proof and the duality
relations. In fact, the first statement is slightly stronger than the second, because the
height of the vertical crossing is j + 1, but this really plays no role in the proof. Thus,
we essentially aim to prove that if i and j are large, then the maximum of the horizontal
and vertical crossing probabilities of R is close to one. We first prove another claim before
proving the assertion.

Claim. Let H := R× [0,∞) denote the upper half plane. Then

µ[{H ↔H ∞}] = µ[{ω : 1− ω ∈ {H ↔H ∞}}] = 0.

Similar statements hold true if we rotate H by an angle in πZ/2.

Proof of the claim. We prove that the complement 1 − ω of ω does not percolate in the
upper half plane; the proof for the primal percolation is the same. Define

ℓ− := (−∞, 0)× {0}; ℓ+ := [0,∞)× {0}; ℓ := R× {0}.
If (1−ω)∩H contains an infinite cluster with positive probability, then each infinite cluster
intersects ℓ almost surely. In particular, one such cluster intersects the point (0, 0) ∈ Z2

with positive probability. To obtain the desired contradiction, it suffices to prove that
µ[{ℓ− ↔H ℓ+}] = 1; see Figure 15.
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Figure 16. Proof of the assertion

Figure 17. The map m and the existence of the square F

Fix ε > 0; we aim to prove that µ[{ℓ− ↔H ℓ+}] ≥ 1 − 3ε. Fix r ≥ 2 so large that
µ[{B(r − 2) ↔ ∞}] ≥ 1− ε4, and fix r′ > r so large that

µ[{ω ∩B(r′) has two distinct connected components connecting B(r) to ∂B(r′ − 1)}] ≤ ε.

Such values for r and r′ exist because ω contains a unique infinite connected component
almost surely. Notice now that for any x ∈ Z, we have:

• µ[{B(x,r′)(r − 2) ↔H ℓ}] ≥ 1− ε4,
• µ[{B(x,r′)(r − 2) ↔H ℓ−}] ∨ µ[{B(x,r′)(r − 2) ↔H ℓ+}] ≥ 1− ε.

The second statement follows from the first using the square root trick. By considering the
limits x → −∞ and x → +∞ as well as the intermediate value theorem, we deduce that
there exists some x such that

µ[{B(x,r′)(r − 2) ↔H ℓ−}], µ[{B(x+1,r′)(r − 2) ↔H ℓ+}] ≥ 1− ε.

By inclusion of events and a union bound, we obtain

µ[{B(x,r′)(r) ↔H ℓ−} ∩ {B(x,r′)(r) ↔H ℓ+}] ≥ 1− 2ε.

By definition of r′, the probability that both events occur but that the two events are not
realised by the same connected component is at most ε, which implies that

µ[{ℓ− ↔H ℓ+}] ≥ 1− 3ε.

This is the claim.

We now focus on the first item in the assertion. Fix ε > 0; we aim to prove that

h(i, j) ∨ v(i, j + 1) ≥ 1− 3ε

for sufficiently large i and j. The proof is illustrated by Figure 16.
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Fix r and r′ as in the proof of the previous claim. Define R◦ := [r′, i− r′]× [r′, j − r′].
By definition of r and the square root trick, there is, for each x ∈ R◦, some side I of R
such that

µ[{Bx(r − 2) ↔R I}] ≥ 1− ε.

Write d(·, ·) for the Euclidean metric on R2. Define the map

m : R◦ → {Right,Top,Left,Bottom}
such that:

• m(x) satisfies µ[{Bx(r − 2) ↔R m(x)}] ≥ 1− ε,
• m(x) breaks ties by preferring the side which is the d-closest to x,
• m(x) breaks the remaining ties in an arbitrary way.

If x is close to an edge of R but not to a corner of R, then the claim implies that m(x)
chooses the closest edge, see Figure 17. Formally, there exists a constant n ≥ r′ such that,
for sufficiently large i, j, if d(x, ∂R) ≤ r′ but there is only one side I with d(x, I) ≤ n,
then m(x) = I. Now suppose that i, j ≥ 8n. The intermediate value theorem implies the
existence of a face F of the square lattice graph which is contained in R◦ and such that
m(F ) contains two opposite sides of R. We suppose that Top and Bottom belong to m(F ).
Let x ∈ F denote the bottom-left corner of F . Then by inclusion of events and a union
bound we get

µ[{Bx(r − 1) ↔R Bottom} ∩ {Bx(r − 1) ↔R Top}] ≥ 1− 2ε,

which also implies

µ[{Bx(r) ↔R Bottom} ∩ {Bx(r) ↔R+(0,1) Top+(0, 1)}] ≥ 1− 2ε.

The probability that the two paths realising the above events without being connected within
the box [0, i]× [0, j + 1] is at most ε by definition of r′, which leads to v(i, j + 1) ≥ 1− 3ε.
If instead Left and Right belonged to m(F ), then it can be proved that h(i, j) ≥ 1− 3ε by
a similar argumentation. □

References

[AHPS21] Michael Aizenman, Matan Harel, Ron Peled, and Jacob Shapiro, Depinning in integer-restricted
Gaussian fields and BKT phases of two-component spin models, arXiv preprint arXiv:2110.09498
(2021).

[Ber72] V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems
possessing a continuous symmetry group. II. Quantum systems, Sov. Phys. JETP 34 (1972), no. 3,
610–616.

[Dum17] Hugo Duminil-Copin, Lectures on the Ising and Potts models on the hypercubic lattice, PIMS-CRM
Summer School in Probability, Springer, 2017, pp. 35–161.

[Dum22] , 100 years of the (critical) Ising model on the hypercubic lattice, Proc. Int. Cong. Math,
vol. 1, 2022.

[EL23] Diederik van Engelenburg and Marcin Lis, An elementary proof of phase transition in the planar
XY model, Communications in Mathematical Physics 399 (2023), no. 1, 85–104.

[FKG71] C.M. Fortuin, P.W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered
sets, Communications in Mathematical Physics 22 (1971), 89–103.

[FS81] Jürg Fröhlich and Thomas Spencer, The Kosterlitz-Thouless transition in two-dimensional abelian
spin systems and the Coulomb gas, Communications in Mathematical Physics 81 (1981), no. 4,
527–602.

[GHM01] Hans-Otto Georgii, Olle Häggström, and Christian Maes, The random geometry of equilibrium
phases, Phase transitions and critical phenomena, vol. 18, Elsevier, 2001, pp. 1–142.

[Gin70] Jean Ginibre, General formulation of Griffiths’ inequalities, Communications in mathematical
physics 16 (1970), 310–328.

[GS20] Christophe Garban and Avelio Sepúlveda, Statistical reconstruction of the Gaussian free field and
KT transition, arXiv preprint arXiv:2002.12284 (2020).

[Har60] T.E. Harris, A lower bound for the critical probability in a certain percolation process, Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 56, Cambridge University Press, 1960,
pp. 13–20.



THE BKT TRANSITION AT THE CRITICAL POINT 36

[KP17] Vital Kharash and Ron Peled, The Fröhlich–Spencer proof of the Berezinskii-Kosterlitz-Thouless
transition, arXiv preprint arXiv:1711.04720 (2017).

[KT73] John Michael Kosterlitz and David James Thouless, Ordering, metastability and phase transitions
in two-dimensional systems, Journal of Physics C: Solid State Physics 6 (1973), no. 7, 1181–1203.

[Lam22] Piet Lammers, Height function delocalisation on cubic planar graphs, Probability Theory and
Related Fields 182 (2022), no. 1-2, 531–550.

[Moo69] MA Moore, Additional evidence for a phase transition in the plane-rotator and classical Heisenberg
models for two-dimensional lattices, Physical Review Letters 23 (1969), no. 15, 861.

[MW66] N David Mermin and Herbert Wagner, Absence of ferromagnetism or antiferromagnetism in one-
or two-dimensional isotropic Heisenberg models, Physical Review Letters 17 (1966), no. 22, 1133.

[Ons44] Lars Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,
Physical Review 65 (1944), no. 3-4, 117.

[Pei36] Rudolf Peierls, On Ising’s model of ferromagnetism, Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 32, Cambridge University Press, 1936, pp. 477–481.

[Sta68] H Eugene Stanley, Dependence of critical properties on dimensionality of spins, Physical Review
Letters 20 (1968), no. 12, 589.

[Str65] Volker Strassen, The existence of probability measures with given marginals, The Annals of
Mathematical Statistics 36 (1965), no. 2, 423–439.

Laboratoire de Probabilités, Statistique et Modélisation (LPSM)

Sorbonne Université

Centre national de la recherche scientifique (CNRS)
Email address: plammers@lpsm.paris


	About these notes
	Acknowledgement
	1. The XY model and the BKT transition
	1.1. Definition of the XY model
	1.2. Spin lattice models and phase transitions
	1.3. Physics overview
	1.4. The Fröhlich–Spencer approach
	1.5. Expansion of the XY model
	1.6. The height function
	1.7. The new approach

	2. Review of the FKG inequality
	2.1. The Harris inequality and the FKG inequality
	2.2. The FKG lattice condition
	2.3. The Ising model
	2.4. Boundary conditions and the infinite-volume limit
	2.5. Percolation: uniqueness of the infinite cluster
	2.6. Percolation: planar graphs
	2.7. Percolation: the noncoexistence theorem in 2D (Zhang's argument)
	2.8. Percolation: the noncoexistence theorem in 2D (general argument)

	References

