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Abstract

A random field is a random function φ from the square lattice Zd to some fixed
standard Borel space (E, E). A random surface is a random field with the extra
condition that E ∈ {Z,R} where E is the standard σ-algebra. For random surfaces,
one often studies the gradient ∇φ of the random function of interest. Random fields
and random surfaces serve as toy models for analysing several phenomena in statistical
physics: examples include percolation models, the Ising model, dimer models, the
discrete Gaussian free field, and uniformly random Lipschitz functions.

We analyse the specific free energy functional for a class of random fields and
for a class of random surfaces. In either case, we are interested in the nature of the
minimisers of the specific free energy, and we give a new characterisation of these
minimisers even when the model fails to be quasilocal. This immediately leads to a
notion of free energy in the spirit of Burton and Keane. In the case of random fields,
we derive a concise theory which includes several existing results, and use this theory
to prove new results for the Loop O(n) model and the Griffiths singularity model.

The study of the minimisers of the specific free energy is part of a larger programme,
where the ultimate goal is to derive strict convexity of the surface tension for random
surface models which are monotone in boundary conditions. We prove this conjecture
in the case that the model is also Lipschitz, although we also impose some very mild
conditions on the representation of the model in terms of an interaction potential to
guarantee well-definedness of the statistical mechanical quantities. This in contrast to
the work of Sheffield, where the case for strict convexity depends strongly on special
properties of the potential, namely that it is a convex nearest-neighbour potential.
The results in this thesis include a large deviations principle for (simultaneously) the
macroscopic shape and the microscopic statistics of the surface under consideration.
Applications include models induced by submodular potentials, that is, potentials
which satisfy the Fortuin-Kasteleyn-Ginibre lattice condition. This answers an open
question of Sheffield in the Lipschitz case: we derive that the surface tension is strictly
convex. We furthermore prove a conjecture of Menz and Tassy: we derive strict
convexity of the surface tension for uniformly random graph homomorphisms from
Zd to a k-regular tree, for any d, k ≥ 2. This is remarkable as the target space is not
Z or R.

Finally, we prove new results for a generalisation of the hexagonal dimer model to
higher dimensions. We give a much more direct version of Sheffield’s proof for strict
convexity of the surface tension, tailored to the special structure of the model. The
same structure implies an identity for the covariance structure of the model in terms
of its random geometry. We also derive a generalised Kasteleyn theory: the partition
function of the model equals the Cayley hyperdeterminant of the hypergraph which
is the natural dual to the graph supporting the generalised model.
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Chapter 1
Introduction

1.1 Preface

The behaviour of many physical systems is understood to be random, or at least
chaotic, on the atomic scale. The purpose of statistical mechanics is to understand
the macroscopic behaviour of such systems, through a probabilistic, mathematical
analysis on the microscopic scale. It turns out that the macroscopic time evolution of
these systems is often predictable and essentially deterministic. This principle—that
macroscopic order emerges from microscopic disorder—is at the core of statistical
mechanics.

The development of statistical mechanics is relatively new. Initial efforts within
the sciences focused instead on a deterministic understanding of the natural phe-
nomena that we, as humans, can observe directly. Mathematics turned out to be an
indispensable tool for building this understanding from the very start. The calculus
of variations, for example, plays a vital role in the rich tradition in classical physics
to relate the equilibria of physical systems to the local minima f : D → R of the
fundamental integral ∫

D
σ(x, f(x),∇f(x))dx

over all functions f that are differentiable almost everywhere. Here D is a bounded
open subset of Euclidean space Rd, and the function σ, which is called the free energy
function, encodes the physical properties of the system. This approach applies to
a broad spectrum of phenomena, and was already present implicitly in the work of
Zenodorus (c. 200 BC), Pappus (c. AD 300) and Galileo, albeit from a geometrical
rather than an analytical perspective [23]. The analytical formulation of the calculus
of variations first appeared in the work of Fermat, who postulated the principle of
least time to describe the refraction of light when passing from one medium to another.
Another key development is the introduction of Lagrangian mechanics: a variational
reformulation of classical mechanics due to Lagrange. Contributors to the calculus
of variations include a number of great scientists: Newton, Leibniz, the Bernoullis,
Euler, Jacobi, Weierstrass, and Hilbert.

We shall focus in this thesis on the application of the calculus of variations to
surfaces. Variational calculus is used in this context to understand the shape of
materials subject to external forces and boundary conditions. The following is a
tangible example in the context of surfaces: it is empirically understood that a soap
film tends to minimise its surface area when subjected to boundary constraints. A
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soap bubble is spherical, because a sphere minimises the area of the surface, subject
to a volume constraint.

Essential to the theory of variational calculus is the assumption that the model
of interest is continuous in spirit. This contradicts our understanding of the nature
of matter at the atomic scale. The first application of statistical mechanics in this
case is to derive the variational characterisation of the macroscopic equilibria of a
system, from the microscopic description of that system. The free energy function σ,
which is also called surface tension in the context of surfaces, plays a pivotal role
in this connection between small and large. The surface tension is a macroscopic
quantity, but relates directly to the specific free energy of the microscopic equilibria
of the model. Suppose for a moment that the surface tension is strictly convex. This
would imply that the fundamental integral has a unique minimiser, which in turn
implies that the system has a unique macroscopic equilibrium. Broadly speaking, this
assumption leads to the premise of statistical mechanics that macroscopic stability
emerges from microscopic disorder. This thesis fits into a larger programme, where
the ultimate objective is to justify this assumption from a rigorous, mathematical
perspective. The most significant result in this thesis, is that we prove strict convexity
of the surface tension for nearly all random surface models which are Lipschitz and
which are monotone in boundary conditions.

The surface tension is the thread that connects the three subsequent chapters.
Each chapter corresponds to a separate research article, and can, as such, be considered
an independent piece of work. Chapter 2 and Chapter 3 derive from work written in
collaboration with Martin Tassy, while Chapter 4 is the sole work of the author of
this thesis.

The remainder of this chapter consists of three sections. Section 1.2 provides
a brief overview of the thesis. Section 1.3 contains the definitions for the formal
discussion of random surfaces. Section 1.4 presents the main results of each chapter.

1.2 Overview

A random field is a random function φ from the square lattice Zd to some fixed
standard Borel space (E, E). A random surface is a random field with the extra
condition that E ∈ {Z,R} where E is the standard σ-algebra. For random surfaces,
one often studies the gradient ∇φ of the random function of interest. Random fields
and random surfaces serve as toy models for analysing several phenomena in statistical
physics: examples include percolation models, the Ising model, dimer models, the
discrete Gaussian free field, and uniformly random Lipschitz functions.

In Chapter 2, we analyse the specific free energy functional for a class of random
fields. We are interested specifically in the nature of the minimisers of this functional,
and we give a characterisation of these minimisers even when the model fails to be
quasilocal. This immediately leads to a notion of free energy in the spirit of Burton
and Keane. We derive a concise theory which includes several existing results, and use
this theory to prove new results for the Loop O(n) model and the Griffiths singularity
model.

The study of the minimisers of the specific free energy is part of a larger programme,
where the ultimate goal is to derive strict convexity of the surface tension for random
surface models which are monotone in boundary conditions. This conjecture was first
established by Sheffield for convex nearest-neighbour potentials in his seminal work
Random Surfaces. In Chapter 3, we prove the conjecture in the case that the model
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under consideration is both monotone and Lipschitz, although we also impose some
very mild conditions on the representation of the model in terms of an interaction
potential to guarantee well-definedness of the statistical mechanical quantities. This in
contrast to the work of Sheffield, where the case for strict convexity depends strongly
on special properties of the potential, namely that it is a convex nearest-neighbour
potential. Chapter 3 relies crucially on the ideas from Chapter 2 on minimisers of
the specific free energy functional, suitably adapted to the setting of random surfaces.
The results in Chapter 3 include a large deviations principle for (simultaneously) the
macroscopic shape and the microscopic statistics of the surface under consideration.
Applications include models induced by submodular potentials, that is, potentials
which satisfy the Fortuin-Kasteleyn-Ginibre lattice condition. This answers an open
question of Sheffield in the Lipschitz case: we derive that the surface tension is strictly
convex. We furthermore prove a conjecture of Menz and Tassy: we derive strict
convexity of the surface tension for uniformly random graph homomorphisms from
Zd to a k-regular tree, for any d, k ≥ 2. This is remarkable as the target space is not
Z or R.

In Chapter 4, we discuss a generalisation of the hexagonal dimer model to higher
dimensions. We prove additional results for this model, which also falls into the
class of Chapter 3. We give a much more direct version of Sheffield’s proof for strict
convexity of the surface tension, tailored to the special structure of the model. The
same structure implies an identity for the covariance structure of the model in terms
of its random geometry. We also derive a generalised Kasteleyn theory: the partition
function of the model equals the Cayley hyperdeterminant of the hypergraph which
is the natural dual to the graph supporting the generalised model.

1.3 The formalism of random surfaces

We are concerned with the study of random surfaces, which are special cases of random
fields. We shall follow the notation of Georgii [20] or otherwise Sheffield [54] wherever
possible. The reader should be warned that the notation for the context of random
surfaces sometimes differs from the notation for general random fields—we shall make
notice of this when encountering these differences. Chapter 2 uses the notation of
random fields, while Chapter 3 uses the notation of random surfaces. Chapter 4
concerns a specific model of random surfaces, and is much lighter in notation relative
to the other two.

We introduce the definitions and notations in four stages. In the first stage, we
introduce random fields and random surfaces, which are merely distributions. In the
second stage, we introduce specifications and potentials, which encode the interactions
of the model of interest. Once the definition of a specification is established, we can
rightfully say that a random field is a Dobrushin-Lanford-Ruelle (DLR) measure,
that is, an equilibrium of the model. In the third stage, we introduce the notions of
entropy, specific free energy, and surface tension. One improvement that is made in
this thesis, is that we include models with infinite-range interactions in the analysis.
To this end, we introduce some original constructions in the fourth stage. We recall
the definition of quasilocality, and introduce objects to describe the behaviour of
random fields and random surfaces when quasilocality fails.
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1.3.1 Random fields and random surfaces
If (X,X ) is any measurable space, then write P(X,X ) for the set of probability
measures on (X,X ), andM(X,X ) for the set of σ-finite measures µ with µ(X) > 0.
It is always tacitly understood that all measurable spaces are standard Borel spaces:
this is useful as it implies immediately that regular conditional probability distributions
are well-defined. The pair (E, E) denotes a fixed standard Borel space.

Fix a dimension d ∈ N. The set S := Zd is called the parameter set, and (E, E) is
called the state space. Elements of S are called sites. A configuration is a function
ω that assigns to each site x ∈ S a state ωx ∈ E. Write Ω := ES for the set
of configurations, and F for the product σ-algebra ES on Ω. A random field is a
probability measure on configurations: the set of random fields is P(Ω,F).

A random surface is a random field where the standard Borel space (E, E) is either
Z or R endowed with the standard σ-algebra. In this case, we view configurations
as functions from Zd to E, and they are also called height functions. The symbols
φ and ψ are preferred over the symbol ω when referring to height functions. In the
setting of random surfaces, it makes sense to speak of the gradient ∇φ of some height
function φ : Zd → E. This gives rise in particular to the gradient σ-algebra F∇,
which is generated by the functions φ(y)− φ(x) with x and y ranging over Zd. Of
particular interest to us is the set P(Ω,F∇), the collection of gradient measures.

Consider again the general setting of random fields. Write d1 for the graph metric
on the square lattice Zd. Write Λ ⊂⊂ Zd whenever Λ is a finite subset of Zd. If ω
is a configuration, then write ωΛ ∈ EΛ for the restriction of ω to Λ, for any subset
Λ ⊂ Zd. If ζ is another configuration and ∆ ⊂ Zd another subset disjoint from Λ, then
write ωΛζ∆ for the unique element in EΛ∪∆ which restricts to ω on Λ and to ζ on
∆. Define the σ-algebras FΛ := σ(ωx : x ∈ Λ) and TΛ := σ(ωx : x ∈ Zd r Λ) for any
Λ ⊂ Zd, and write T := ∩Λ⊂⊂ZdTΛ. An event (or function) is called a cylinder event
(or function) if it is FΛ-measurable for some Λ ⊂⊂ Zd, and it is called tail-measurable
if it is T -measurable. In the setting of random surfaces, we furthermore define

F∇Λ := FΛ ∩ F∇, T ∇Λ := TΛ ∩ F∇, T ∇ := T ∩ F∇.

To see convergence of a model on the macroscopic scale, it is essential that the
model exhibits shift-invariance on the microscopic scale. Morally, this means that the
model is not able to distinguish between different points of Euclidean space and alter
its behaviour accordingly. For any x ∈ Zd, write θx : Zd → Zd for the map y 7→ y+ x.
Such maps are called shifts. Write L for a fixed full-rank sublattice of Zd, and write
Θ = Θ(L) for the group of shifts {θx : x ∈ L}. We shall always choose L := Zd
when considering general random fields, and allow other lattices only in the context
of random surfaces. If ω ∈ Ω and θ ∈ Θ, then θω denotes the unique configuration
satisfying (θω)(x) = ω(θx) for all x. Similarly, define

θA := {θω : ω ∈ A}, θA := {θA : A ∈ A}, θµ : θA → [0,∞], θµ(θA) 7→ µ(A)

for A ⊂ Ω, for A a sub-σ-algebra of F , and for µ a measure on A. Any of these three
objects is called L-invariant or Θ-invariant if they are invariant under θ for any
θ ∈ Θ. If A is an L-invariant σ-algebra on Ω, then write PL(Ω,A) or PΘ(Ω,A) for the
collection of L-invariant probability measures on (Ω,A). Note that PL(Ω,A) is the
set of probability measures on (Ω,A) such that ω and θω have the same distribution
for any θ ∈ Θ.

Let A denote a sub-σ-algebra of F . The topology of local convergence or L-topology
on P(Ω,A) is the coarsest topology that makes the map µ 7→ µ(A) continuous for
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any cylinder event A in A. In the setting of random surfaces, we call a measurable
function f : Ω → R a continuous cylinder function if f is FΛ-measurable for some
Λ ⊂⊂ Zd, and if f is continuous as a function on EΛ with respect to the natural
topology on EΛ (recall that E ∈ {Z,R}). In this case, the topology of weak local
convergence is the coarsest topology on P(Ω,A) that makes the map µ 7→ µ(f)
continuous for each bounded continuous cylinder function f . The topology of local
convergence and the topology of weak local convergence coincide whenever E = Z.

1.3.2 Specifications and potentials
A specification is a family γ = (γΛ)Λ⊂⊂Zd of probability kernels, such that

1. γΛ is a probability kernel from (Ω, TΛ) to (Ω,F) for each Λ ⊂⊂ Zd,

2. µγΛ(A) = µ(A) for any Λ ⊂⊂ Zd, A ∈ TΛ, and µ ∈ P(Ω,F),

3. γΛγ∆ = γΛ for any ∆ ⊂ Λ ⊂⊂ Zd.

The specification defines the local behaviour of the model, and we think of γΛ(·, ω) as
the local Gibbs measure in Λ ⊂⊂ Zd with boundary conditions ω ∈ Ω. A specification
γ is called L-invariant if γΛ(·, θω) = θγθΛ(·, ω) for any Λ ⊂⊂ Zd, ω ∈ Ω, and θ ∈ Θ.
Some random field µ ∈ P(Ω,F) is called a Dobrushin-Lanford-Ruelle (DLR) measure
for the specification γ if µγΛ = µ for any Λ ⊂⊂ Zd.

In the setting of random surfaces, we call a specification γ monotone if φ ≤ ψ
implies γΛ(·, φ) � γΛ(·, ψ) for any Λ ⊂⊂ Zd. Call the specification Lipschitz if there
exists some constant K ∈ (0,∞) such that γΛ(·, φ) is supported on K-Lipschitz
functions for any Λ ⊂⊂ Zd and for any K-Lipschitz function φ (a more subtle notion
is introduced at a later stage). We finally use the group structure of (E,+) to define
gradient specifications. Call γ a gradient specification if the distribution of ψ + a in
γΛ(·, φ) equals that of ψ in γΛ(·, φ+ a) for any Λ ⊂⊂ Zd, φ ∈ Ω, and a ∈ E, where
ψ denotes the random height function in each local Gibbs measure. Note that each
kernel γΛ restricts to a kernel from (Ω, T ∇Λ ) to (Ω,F∇) whenever γ is a gradient
specification. If µ is a gradient measure and γ a gradient specification, then call µ a
gradient DLR measure if µγΛ = µ for any Λ ⊂⊂ Zd.

Let us now return to the general setting of random fields. Although specifications
exist in their own right, they are often induced by a potential. An interaction potential
Φ = (ΦΛ)Λ⊂⊂Zd is a family of potential functions ΦΛ : Ω → R ∪ {∞} where each
function ΦΛ is required to be measurable with respect to FΛ. A potential Φ is called
L-invariant or periodic if ΦθΛ(ω) = ΦΛ(θω) for all θ ∈ Θ and for any ω ∈ Ω. In the
sequel, Φ shall always denote a fixed periodic potential. In the setting of random
surfaces, it is furthermore assumed that Φ is a gradient potential, meaning that each
function ΦΛ is F∇Λ -measurable.

Next, introduce the Hamiltonian. For Λ ⊂⊂ Zd and ∆ ⊂ Zd containing Λ, let
HΛ,∆ denote the F∆-measurable function from Ω to R ∪ {∞} defined by

HΛ,∆ :=
∑

Γ ⊂⊂ Zd with Γ ⊂ ∆ and with Γ intersecting Λ
ΦΓ.

In particular, we write HΛ := HΛ,Zd and H0
Λ := HΛ,Λ. It is not obvious from this

definition that the sum is well-defined, but we shall not concern ourselves with that
problem in this section. The function HΛ is called the Hamiltonian of Λ and H0

Λ is
called the interior Hamiltonian of Λ.
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If the specification of interest is generated by a potential, then the standard
Borel space (E, E) is endowed with a reference measure λ ∈M(E, E). In the case of
random surfaces, this reference measure is always the counting measure (whenever
E = Z) or the Lebesgue measure (whenever E = R).

The potential Φ generates a specification γΦ = (γΦ
Λ )Λ⊂⊂Zd defined by

γΦ
Λ (A,ω) :=

1

ZΦ
Λ (ω)

∫
EΛ

1A(ζωZdrΛ)e−H
Φ
Λ (ζωZdrΛ

)dλΛ(ζ),

for any Λ ⊂⊂ Zd, ω ∈ Ω, and A ∈ F , where ZΦ
Λ (ω) is the normalising constant

ZΦ
Λ (ω) :=

∫
EΛ

e−H
Φ
Λ (ζωZdrΛ

)dλΛ(ζ).

We drop the superscript Φ in this notation unless the choice of potential is ambiguous.
Of course, γΛ(·, ω) is a well-defined probability measure on (Ω,F) only if ZΛ(ω) ∈
(0,∞). Say that ω has finite energy if ΦΛ(ω) <∞ for any Λ ⊂⊂ Zd, and say that ω
is admissible if it has finite energy and ZΛ(ω) ∈ (0,∞) for any Λ ⊂⊂ Zd. To draw a
sample ζ from γΛ(·, ω), set first ζ equal to ω on the complement of Λ, then sample ζΛ

proportional to e−HΛλΛ. Similarly, if µ is a probability measure on (Ω, TΛ) supported
on admissible configurations, then µγΛ is a probability measure on (Ω,F); to sample
from µγΛ one first obtains an auxiliary sample ω from µ; then one draws the final
sample ζ from γΛ(·, ω).

It is important to observe that γ is always a gradient specification in the context
of random surfaces. This is due to the fact that Φ is a gradient potential which makes
HΛ measurable with respect to F∇, and because the reference measures λ and λΛ

are invariant under translations.

1.3.3 The entropy functional and its derivatives
Consider two σ-finite measures µ, ν ∈ M(X,X ) on a standard Borel space (X,X ).
The entropy of µ relative to ν is defined by

H(µ|ν) :=

{
µ(log f) = ν(f log f) if µ� ν where f := dµ/dν,
∞ otherwise.

The max-entropy of µ relative to ν is defined by

H∞(µ|ν) := log inf{λ ≥ 0 : µ ≤ λν} =

{
ess sup log f if µ� ν where f := dµ/dν,
∞ otherwise.

The definition of the max-entropy is due to Datta [8]. Note that both entropies are
nonnegative when µ and ν are probability measures—if they are indeed probability
measures, then each entropy equals zero if and only if µ = ν. If Y is a sub-σ-algebra
of X , then define HY(µ|ν) := H(µ|Y |ν|Y). Finally, define the max-diameter of a
nonempty set A ⊂M(X,X ) by

Diam∞A := sup
µ,ν∈A

H∞(µ|ν) ≥ 0,

where we observe equality if and only if A contains exactly one measure. Note that
Diam∞A <∞ if and only if all measures in A are absolutely continuous with respect
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to one another, with a uniform bound on the logarithm of the Radon-Nikodym
derivatives.

Next comes the introduction of the free energy and the specific free energy.
For random fields, these are defined relative to another random field or relative to
the specification. For random surfaces, these are defined relative to the potential
generating the specification. The definition for general random fields is more flexible;
the reason for this is extensively discussed in Chapter 2, as well as in Section 3.2.

Let us first discuss general random fields. Fix some reference random field
ν ∈ PΘ(Ω,F). If µ ∈ P(Ω,F) is some other random field, then the free energy of µ
in some set Λ ⊂⊂ Zd with respect to ν is defined by

HΛ(µ|ν) := HFΛ
(µ|ν).

If µ is L-invariant, then the specific free energy of µ with respect to ν is defined by

H(µ|ν) := lim
n→∞

|∆n|−1H∆n(µ|ν),

where ∆n represents the hypercube {−n, . . . , n}d ⊂⊂ Zd. The limit is not convergent
in all cases, but we shall impose the appropriate restrictions on ν in Chapter 2 which
guarantee consistency of the definition.

If a specification is chosen as reference distribution, then we define the specific
free energy instead by

H(µ|γ) := lim
n→∞

|∆n|−1H∆n(µ|νγ∆n),

where ν ∈ P(Ω,F) is an arbitrary random field serving as the mixed boundary
condition for the specification. We shall again impose the appropriate restrictions on
γ so that this is well-defined and independent of the choice of ν.

For random surfaces, the free energy and the specific free energy are defined with
respect to the reference measure λ and the potential Φ. If µ ∈ P(Ω,F∇) is a gradient
measure, then the free energy of µ in Λ with respect to Φ is defined by

HΛ(µ|Φ) := HF∇Λ (µ|e−H
0,Φ
Λ λΛ−1) = HF∇Λ (µ|λΛ−1) + µ(H0,Φ

Λ ).

Here λΛ−1 denotes the natural gradient measure obtained by choosing one vertex of
Λ as a reference point, and taking the product over the λ for all other sites in Λ. If µ
is furthermore L-invariant, then define the specific free energy of µ with respect to Φ
by the limit

H(µ|Φ) := lim
n→∞

|Πn|−1HΠn(µ|Φ),

where Πn := {0, . . . , n− 1}d ⊂⊂ Zd. Observe the difference between the sets ∆n and
Πn; this difference is cosmetic in nature, and both definitions for the specific free
energy are in fact invariant under interchanging ∆n and Πn.

Finally, in the setting of random surfaces, we can introduce the notion of a slope,
which gives rise to the surface tension. Consider a shift-invariant gradient measure
µ ∈ PL(Ω,F∇). If φ(y)−φ(x) is µ-integrable for any x, y ∈ Zd, then µ is said to have
finite slope. If µ has finite slope, then shift-invariance of µ implies that the function

L → R, x 7→ µ(φ(x)− φ(0))

is additive. In particular, this means that there is a unique linear functional u ∈ (Rd)∗
such that

u(x) = µ(φ(x)− φ(0))
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for any x ∈ L ⊂ Rd. This linear functional u is called the slope of µ, and we write
S(µ) for it. The surface tension at some slope u is now defined to be the infimum of
the specific free energy functional H(·|Φ) over all shift-invariant gradient measures of
that slope; formally, we write

σ(u) := inf
µ ∈ PL(Ω,F∇) with S(µ) = u

H(µ|Φ).

1.3.4 Constructions for the infinite-range setting

This final subsection introduces some constructions for dealing with the infinite-range
setting. The letter γ shall denote the specification of the model of interest throughout.
It was already mentioned that our analysis includes models which are not necessarily
quasilocal. The constructions in this subsection are original, with the exception of
the definition of quasilocality. We introduce these definitions from the perspective of
random surfaces, although the definitions are the same for general random fields.

Write πΛ for the natural probability kernel from (Ω,F) to (EΛ, EΛ) which restricts
measures to Λ. Consider two finite sets Λ ⊂ ∆ ⊂⊂ Zd. Denote by AΛ,∆,φ the set
of probability measures on (EΛ, EΛ) of the form µγΛπΛ, where µ is any measure in
P(Ω,F) subject only to µπ∆ = δφ∆

. In other words, AΛ,∆,φ is the set of local Gibbs
measures in Λ (and restricted to Λ) given (mixed) boundary conditions which match
φ on ∆. Write C(A) for the closure of any set A ⊂ P(EΛ, EΛ) in the strong topology,
and define

AΛ,φ := ∩∆⊂⊂ZdC(AΛ,∆,φ).

A height function φ ∈ Ω is called a point of quasilocality if AΛ,φ = {δφγΛπΛ} =
{γΛ(·, φ)πΛ} for any Λ ⊂⊂ Zd. Write Ωγ for the set of points of quasilocality. Call a
measure µ ∈ P(Ω,F) an almost Gibbs measure whenever µ(Ωγ) = 1 and µ = µγΛ for
any Λ ⊂⊂ Zd. The definition of an almost Gibbs measure is the same for gradient
measures µ ∈ P(Ω,F∇)—noting that Ωγ is F∇-measurable because γ is a gradient
specification. Almost Gibbs measures are called Gibbs measures whenever Ωγ = Ω.

1.4 Main results

1.4.1 General random fields

Chapter 2 investigates the nature of the minimisers of the specific free energy relative
to specifications which are weakly dependent, a term coined by Lewis, Pfister, and
Sullivan. For the definition of weak dependence, we require more notation. Let γ
denote the shift-invariant specification of interest, and recall the definition of the
restriction kernel π in the previous section. Write AΛ(γ) for the set

AΛ(γ) := {µγΛπΛ : µ ∈ P(Ω,F)} ⊂ P(EΛ, EΛ).

In other words, AΛ(γ) is the set of local Gibbs measures in Λ with arbitrary mixed
boundary conditions, and restricted to Λ. The specification γ is called weakly
dependent if Diam∞A∆n(γ) = o(nd) as n → ∞. This means that the interaction
between the states of sites in ∆n with those outside ∆n is of order o(|∆n|). The weakly
dependent framework includes independent percolation models, the random-cluster
model, the Ising model, the Loop O(n) model, and the Griffiths singularity model.
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General results

Theorem 1.4.1. Consider a weakly dependent specification γ. Then the map H(·|γ) :
PΘ(Ω,F)→ [0,∞] is well-defined with compact lower level sets in the topology of local
convergence. Moreover, the set of minimisers h0(γ) := {H(·|γ) = 0} is nonempty,
and the following are equivalent for random fields µ ∈ PΘ(Ω,F):

1. µ ∈ h0(γ),

2. νnγ∆n → µ in the L-topology for some sequence (νn)n∈N ⊂ P(Ω,F),

3. µπ∆n ∈ C(A∆n(γ)) for each n ∈ N.

Moreover, if µ ∈ h0(γ), then

1. µ is almost Gibbs if µ(Ωγ) = 1,

2. µ has finite energy, in the sense of Burton and Keane,

3. µωΛ ∈ AΛ,ω for µ-almost every ω, for each fixed Λ ⊂⊂ Zd.

For the last statement, we write µωΛ for the regular conditional probability distribution
of µ on (EΛ, EΛ) corresponding to the projection map Ω→ EZdrΛ.

Finally, we deduce a similar theory for the specific free energy functional relative
to a weakly dependent random field. A random field µ is called weakly dependent if
µ ∈ h0(γ) for some weakly dependent specification γ.

Theorem 1.4.2. If γ is a weakly dependent specification and µ ∈ h0(γ), then
H(·|µ) : PΘ(Ω,F)→ [0,∞] is well-defined, and H(·|µ) = H(·|γ).

It is natural for a random field µ to choose a version of its local regular conditional
probability distribution as its specification, which makes µ automatically a DLR
measure for that specification. This circumvents however the issue of quasilocality,
and it is not true that any weakly dependent random field is an almost Gibbs measure
for some choice of specification.

The Loop O(n) model

Let us now discuss two applications of this theory, starting with the Loop O(n) model.
A loop configuration is a subset of the edge set of the hexagonal lattice with the
property that it gives each vertex even degree. It is easy to see that each connected
component of a given loop configuration is a closed loop or a bi-infinite path through
the hexagonal lattice. The Loop O(n) model has two parameters: they are x and
n. The relative weight of a configuration ω is given (informally) by x|ω| · n|C(ω)|,
where |ω| is the number of edges in ω, and |C(ω)| the number of loops. The model
can alternatively be considered an Ising model on the faces of the hexagonal lattice,
together with an extra interaction which counts the number of spin clusters. Our
theory, together with a brief analysis of the minimisers of the specific free energy
functional, lead to the following result.

Theorem 1.4.3. For any x, n ∈ (0,∞), the Loop O(n) model has shift-invariant
almost Gibbs measures.
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The Griffiths singularity model

The Griffiths singularity random field consists of an Ising model in a random percola-
tion environment. The state space is E = {−1, 0, 1}; the state 0 indicates that a site
is closed, while the states ±1 indicate an open site with that spin. Fix p ∈ (0, 1) and
β ≥ 0. The Griffiths singularity random field Kp,β ∈ PΘ(Ω,F) is defined as follows:
to draw from Kp,β , one first sets each site to 0 with probability 1− p and to 1 with
probability p. Then, one samples an Ising model on the open clusters, say with +1
boundary conditions to make sense of the Ising model on the infinite cluster whenever
it is present.

The specification corresponding to this random field has long-range interactions,
which is perhaps counter-intuitive. This model does, however, fit the weakly dependent
framework of Chapter 2. There are three phases. If there is no infinite percolation
cluster, then the Ising model decomposes as an infinite product of independent Ising
models on finite graphs. If there is an infinite percolation cluster, then there are two
options, depending on whether or not the Ising model magnetises on this infinite
cluster. It was known that the measure Kp,β is the only minimiser of the specific free
energy functional, and that this is the only DLR state of the natural specification
corresponding to Kp,β, whenever there is no infinite percolation cluster. We extend
this result to the submagnetic phase.

Theorem 1.4.4. Consider those pairs of parameters p and β for which

Kp,β(ω0 = −1) = Kp,β(ω0 = 1).

Then the variational principle holds true, in the sense that the minimisers of the
specific free energy coincide exactly with the set of almost Gibbs measures. Moreover,
this set contains only a single measure: the measure Kp,β.

Note that the variational principle fails for this model in the magnetic phase for
an appropriate choice of dimension d ∈ N and parameters p and β, so the result in
this thesis is perhaps the sharpest result which relies on generic arguments only.

1.4.2 Lipschitz random surfaces
The purpose of Chapter 3 is to derive strict convexity of the surface tension for
random surface models which are Lipschitz and which are monotone in boundary
conditions. The proof includes several auxiliary results which are of independent
interest. We provide two significant and original applications of our theory: to
submodular potentials, that is, potentials which satisfy the Fortuin-Kasteleyn-Ginibre
(FKG) lattice condition, and to uniformly random graph homomorphisms from the
square lattice Zd to a k-regular tree, for any d, k ≥ 2.

Chapter 3 applies to nearly all random surface models which are monotone and
Lipschitz. For the thermodynamical formalism, it is required that the model is
furthermore generated by a potential which falls into a certain class of potentials.
This class is deliberately chosen as large as possible, and in particular, it does not
rule out models with infinite-range interactions. As a consequence, its definition is
quite involved.

The Lipschitz constraint

It is important for our arguments that the specification does not only exclude height
functions which are not Lipschitz: it must also allow all height functions that are
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Lipschitz with positive probability (if E = Z) or density (if E = R). This extra
property will play a role in the derivation of the large deviations principle and in
the application of the classical argument of Burton and Keane in the last step of the
proof for strict convexity of the surface tension.

To be as general as possible, we must therefore introduce a more subtle definition
of the Lipschitz constraint. The Lipschitz constraint is specified in two steps. First,
choose an L-invariant edge set A on Zd which makes (Zd,A) into a connected graph of
bounded degree. Second, specify upper and lower bounds on each edge in A in a shift-
invariant way. A height function φ is now called Lipschitz if for each edge {x, y} ∈ A,
the difference φ(y) − φ(x) falls within the specified bounds. The locally defined
Lipschitz constraint induces a so called local Lipschitz constraint q : Zd × Zd → R,
which behaves more or less like a metric on Zd. The advantage of this definition
is that a height function φ is Lipschitz if and only if φ(y) − φ(x) ≤ q(x, y) for all
x, y ∈ Zd, in which case we say that φ is q-Lipschitz. Write Uq for the interior of the
set of slopes u ∈ (Rd)∗ such that u|L is q-Lipschitz. This set is convex, and it turns
out to be the interior of the set of slopes on which the surface tension σ takes finite
values. Finally, in the case that E = R, we write qε for the local Lipschitz constraint
induced by the same graph A, but with the upper bounds decreased by ε and the
lower bounds increased by ε. If a height function φ is qε-Lipschitz for ε > 0, then
small perturbations of it are automatically q-Lipschitz.

The class of potentials

We allow potentials Φ which belong to the class SL +WL, where SL contains finite-
range potentials which enforce the Lipschitz constraint from the previous passage, and
where WL encodes the long-range interactions of the model which are not necessarily
quasilocal, but which decay at a sufficiently fast rate for the specific free energy to be
well-defined. The definition of the second class is reminiscent of the weakly dependent
context of Chapter 2. We first focus on the class SL.

Definition 1.4.5. Let Ψ denote an arbitrary periodic gradient potential. The
potential Ψ is called positive if ΨΛ ≥ 0 for any Λ ⊂⊂ Zd. The potential Ψ is said to
have finite range if ΨΛ ≡ 0 whenever the diameter of Λ—in the graph metric d1 on
the square lattice—exceeds some fixed constant. The potential Ψ is called Lipschitz
if there exists a local Lipschitz constraint (A, q) such that ΨΛ(φ) = ∞ if and only
if Λ = {x, y} ∈ A and φ(y) − φ(x) > q(x, y) for some x, y ∈ Zd. If E = R and Ψ
Lipschitz with constraint (A, q), then Ψ is called locally bounded if for any ε > 0
sufficiently small, there exists a fixed constant Cε <∞, such that

HΨ
{x}(φ) ≤ Cε

for any x ∈ Zd and for any φ ∈ Ω which is qε-Lipschitz at x (in the sense that the
Lipschitz condition is not violated on any edge of A incident to x). A potential Ψ
is called a strong interaction if Ψ has all of the above properties, that is, if Ψ is
a positive Lipschitz periodic gradient potential of finite range, and if it is locally
bounded in the case that E = R. We shall write SL for the collection of strong
interactions.

Let us now focus on the class WL. By an amenable function we mean a function
f which assigns a number in [0,∞) to each finite subset of Zd, such that:

1. f(Λ) = f(θΛ) for all Λ ⊂⊂ Zd and for any θ ∈ Θ,
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2. f(Λ ∪∆) ≤ f(Λ) + f(∆) for all Λ,∆ ⊂⊂ Zd disjoint,

3. f(Πn) = o(nd) as n→∞, where Πn := {0, . . . , n− 1}d ⊂⊂ Zd.

Definition 1.4.6. Let Ξ denote an arbitrary periodic gradient potential. The
potential Ξ is called summable if it has finite norm

‖Ξ‖ := sup
(x,φ)∈Zd×Ω

∑
Λ ⊂⊂ Zd with x ∈ Λ

|ΞΛ(φ)|.

Define, for any Λ ⊂⊂ Zd,

e−(Λ) := sup
φ∈Ω

∑
∆ ⊂⊂ Zd with ∆ intersecting both Λ and Zd r Λ

|Ξ∆(φ)|.

The function e−(·) is called the lower exterior bound of Ξ. If the potential Ξ is
summable and its lower exterior bound e−(·) amenable, then Ξ is called a weak
interaction. Write WL for the collection of weak interactions.

Our results apply to potentials Φ which decompose as the sum of a potential
Ψ ∈ SL and a potential Ξ ∈ WL.

Results on the surface tension

Let us first state that the specific free energy is well-defined, and mention some of its
properties.

Theorem 1.4.7. If Φ ∈ SL +WL, then the specific free energy functional

H(·|Φ) : PL(Ω,F∇)→ R ∪ {∞}, µ 7→ lim
n→∞

n−dHΠn(µ|Φ)

is well-defined, affine, bounded below, lower-semicontinuous, and for each C ∈ R its
lower level set

MC := {µ ∈ PL(Ω,F∇) : H(µ|Φ) ≤ C}

is a compact Polish space, with respect to the topology of (weak) local convergence. In
fact, the two topologies coincide on each set MC .

Recall the definition of the surface tension σ in Section 1.3, and write UΦ for the
interior of the set {σ < ∞} ⊂ (Rd)∗. It is trivial to demonstrate that σ is convex,
because the slope functional as well as the specific free energy functional are affine.

Theorem 1.4.8. Let Φ denote a potential in SL +WL which induces a monotone
specification.

1. If E = R, then σ is strictly convex on UΦ,

2. If E = Z, then σ is strictly convex on UΦ if for any affine map h : (Rd)∗ → R
with h ≤ σ, the set {h = σ} ∩ ∂UΦ is convex. In particular, σ is strictly convex
on UΦ if at least one of the following conditions is satisfied:

(a) σ is affine on ∂UΦ, but not on ŪΦ,

(b) σ is not affine on the line segment [u1, u2] for any distinct u1, u2 ∈ ∂UΦ

such that [u1, u2] 6⊂ ∂UΦ.
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Moreover, for any potential Φ ∈ SL +WL,

1. We have UΦ = Uq,

2. If E = R, then σ(u) tends to ∞ as u approaches the boundary of UΦ,

3. If E = Z, then σ is bounded and continuous on the closure of UΦ.

The extra condition for discrete models is necessary to control the behaviour
of ergodic measures whose slope is extremal. We will demonstrate that the extra
condition is automatically satisfied for all classical models.

A shift-invariant gradient measure µ is called a minimiser if H(µ|Φ) = σ(S(µ)) <
∞. Let us finish with a remark regarding the existence of minimisers, which follows
directly from the previous two results.

Theorem 1.4.9. Suppose that Φ ∈ SL +WL. Then for any exposed point u ∈ ŪΦ of
σ, there exists an ergodic gradient measure µ of slope u which is also a minimiser. In
particular, if σ is strictly convex on UΦ, then for each u ∈ UΦ, there is an ergodic
minimiser of that slope.

The large deviations principle and the variational principle

A good asymptotic profile is a bounded open set D ⊂ Rd whose boundary has zero
Lebesgue measure, together with a continuous function b : ∂D → R which extends to
some Lipschitz function on Rd whose gradient lies in Uqε almost everywhere for some
ε > 0. Let (D, b) denote a fixed good asymptotic profile.

Say that a sequence of pairs (Dn, bn)n∈N of subsets of Zd and height functions is
a good approximation of (D, b) if 1

nDn → D in the Hausdorff topology on Rd, and
if 1

n Graph bn|∂Dn → Graph b in the Hausdorff topology on Rd × R. We furthermore
require that each function bn is q-Lipschitz whenever E = Z, or qε-Lipschitz for some
uniform constant ε > 0 whenever E = R.

Fix K minimal subject to Kd1 ≥ q. Write Lip(D̄) for the set of K‖ · ‖1-Lipschitz
functions on D̄. This set is endowed with the topology of uniform convergence,
denoted by X∞.

We introduce a map Gn to send height functions φ to Lip(D̄) for each n ∈ N.
Write first φ̄ for the smallest K‖ · ‖1-Lipschitz extension of φ to Rd whenever φ is
q-Lipschitz. The function Gn(φ) is the scaled, restricted version of φ̄:

Gn(φ) : D̄ → R, x 7→ 1

n
φ̄(nx).

Theorem 1.4.10. Let Φ ∈ SL+WL, and let (Dn, bn)n∈N denote a good approximation
of some good asymptotic profile (D, b). Let γ∗n denote the pushforward of γDn(·, bn)
along the map Gn, for any n ∈ N. Then the sequence of probability measures
(γ∗n)n∈N satisfies a large deviations principle with speed nd and rate function I on
the topological space (Lip(D̄),X∞). Moreover, the sequence of normalising constants
(Zn)n∈N := (ZDn(bn))n∈N satisfies −n−d logZn → PΦ(D, g) as n→∞.

In this theorem, the rate function I(f) is given by the fundamental integral

I(f) := −PΦ(D, b) +

∫
D
σ(∇f(x))dx

if f |∂D = b, and I(f) := ∞ otherwise. The constant PΦ(D, b) is the associated
pressure, which is defined precisely such that the minimum of I is zero.
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This result leads immediately to the variational principle.

Corollary 1.4.11. Let Φ ∈ SL +WL, and let (Dn, bn)n∈N denote a good approx-
imation of some good asymptotic profile (D, b). Let γ∗n denote the pushforward of
γDn(·, bn) along the map Gn, for any n ∈ N. Write fn for the random function in
γ∗n, which—as a random object—takes values in Lip(D̄). If σ is strictly convex on
UΦ, then the random function fn converges to the unique minimiser f∗ of the rate
function I, in probability in the topology of uniform convergence as n→∞. In other
words, f∗ is the unique minimiser of the integral∫

D
σ(∇f(x))dx

over all Lipschitz functions f : D̄ → R which equal b on the boundary of D. If
however σ fails to be strictly convex on UΦ, then for any neighbourhood A of the set
of minimisers of the integral in the topology of uniform convergence, we have fn ∈ A
with high probability as n→∞.

Properties of minimisers of the specific free energy

The proof relies on various properties of the minimisers of the specific free energy,
which are of independent interest and stated here. These results are similar in spirit
to what is derived in the weakly dependent setting. We start with a finite energy
result.

Theorem 1.4.12. Consider Φ ∈ SL +WL, and suppose that µ ∈ PL(Ω,F∇) is a
minimiser. Then for any Λ ⊂⊂ Zd, we have

1Ωq(µπZdrΛ × λΛ)� µ,

where Ωq denotes the set of q-Lipschitz height functions.

This result is a corollary of the following result concerning the regular conditional
probability distributions of µ, which holds true even in the absense of quasilocality.
The result appeals to the definitions in Section 1.3.

Theorem 1.4.13. Consider Φ ∈ SL +WL, and suppose that µ ∈ PL(Ω,F∇) is
a minimiser. Fix Λ ⊂⊂ Zd, and write µφ for the regular conditional probability
distribution of µ on (EΛ, EΛ) corresponding to the projection map Ω→ EZdrΛ. Then
for µ-almost every φ ∈ Ω, we have µφ ∈ AΛ,φ. In particular, if µ(Ωγ) = 1, then µ is
an almost Gibbs measure, and if Ωγ = Ω, then µ is a Gibbs measure.

Application to submodular potentials

A potential Φ is said to be submodular if for every Λ ⊂⊂ Zd, the potential function
ΦΛ satisfies the FKG lattice condition:

ΦΛ(φ ∧ ψ) + ΦΛ(φ ∨ ψ) ≤ ΦΛ(φ) + ΦΛ(ψ).

Sheffield proposes this family of potentials as a natural generalisation of simply
attractive potentials, and asks if similar results as the ones proved for simply attractive
potentials in [54] could be proved for finite-range submodular potentials. Specifications
generated by submodular potentials are automatically monotone. We prove new
results in the case that the specification is also Lipschitz.
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Theorem 1.4.14. Let Φ denote a submodular potential in SL +WL. If E = R,
then the surface tension σ is strictly convex on UΦ. If E = Z and if the Lipschitz
constraint q is Zd-invariant rather than merely L-invariant, then the surface tension
σ is strictly convex on UΦ.

The extra condition for discrete models is necessary to fulfill the extra condition
in our general theory, and is satisfied for all commonly studied models.

Application to random graph homomorphisms from Zd to the k-regular tree

It was conjectured by Menz and Tassy in [44] that the surface tension of uniformly
random graph homomorphisms from Zd to a k-regular tree is strictly convex. In this
context, a graph homomorphism is a function from Zd to the k-regular tree Tk which
also map the edges of the square lattice to the edges of the tree. The conjecture is
confirmed in this thesis.

Let us first give a formal definition of the surface tension or entropy, as it is called
in [44]. Write U for the set of slopes u ∈ (Rd)∗ such that |u(ei)| < 1 for each element
ei in the natural basis of Rd. For fixed u ∈ Ū , write φu : Zd → Z for the graph
homomorphism defined by

φu(x) := bu(x)c+

{
0 if d1(0, x) ≡ bu(x)c mod 2,
1 if d1(0, x) ≡ bu(x)c+ 1 mod 2.

Then φu approximates u and is nearly linear, in the sense that ‖φu−u|Zd‖∞ ≤ 1. Let
g denote a bi-infinite geodesic through Tk, that is, a Z-indexed sequence of vertices
g = (gn)n∈Z ⊂ Tk such that dTk(gn, gm) = |m− n| for any n,m ∈ Z. The geodesic g
is thought of as a copy of Z in Tk, and is used as reference frame. Write φ̃u : Zd → Tk
for the graph homomorphism defined by φ̃u(x) := gφu(x) for every x ∈ Zd. It is
shown in [44] that the macroscopic behaviour of uniformly random Tk-valued graph
homomorphisms is characterised by the entropy function

Ent : Ū → [− log k, 0], u 7→ lim
n→∞

−n−d log |{φ̃ ∈ Ω̃ : φ̃ZdrΠn = φ̃uZdrΠn
}|,

where Ω̃ denotes the set of all graph homomorphisms from Zd to Tk. It is conjectured
in [44] that Ent is strictly convex on U , which we prove is correct.

Theorem 1.4.15. For any d, k ≥ 2, the entropy function Ent : Ū → [− log k, 0]
associated to uniformly random graph homomorphisms from Zd to a k-regular tree, is
strictly convex on U .

1.4.3 The honeycomb dimer model in higher dimensions
Chapter 4 discusses a generalisation of the honeycomb dimer model to higher dimen-
sions, which was introduced by Linde, Moore, and Nordahl [41]. The generalisation
is valid in any dimension d ≥ 2. For the original two-dimensional model, each sample
can be interpreted in several different ways:

1. As a stack of well-supported unit cubes, where each cube at some vertex x ∈ Z3

is supported by a cube at the vertex x− ei for all i ∈ {1, 2, 3},

2. As a lozenge tiling, obtained by projecting the exposed faces of the cubes onto
the hyperplane orthogonal to the vector e1 + e2 + e3,
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3. As a function from Z2 to Z ∪ {−∞,∞} which gives the height of each vertical
stack of cubes, and which is non-increasing in each coordinate,

4. As a height function on the triangular lattice,

5. As a dimer cover of the hexagonal lattice.

A remarkable aspect of the generalisation is that it genuinely generalises each of these
five perspectives. The bijections connecting the first four perspectives are geometric
in nature, and are not discussed further in this overview. We shall focus instead on
the relation between the fourth and the fifth perspective, and on the main results
which are described in terms of these two representations.

The generalised model

The letter d ≥ 2 denotes the fixed dimension. Let (Xd, Ed) denote the graph obtained
from the square lattice Zd+1 by identifying vertices which differ by an integer multiple
of the vector n := e1 + · · · + ed+1. This graph is called the simplicial lattice; its
vertices are equivalence classes of vertices of the square lattice. Note that (Xd, Ed) is
the triangular lattice whenever d = 2. Let Ω denote the set of functions f : Xd → Z
which have the property that f(0) ∈ (d + 1)Z and f([x + ei]) − f([x]) ∈ {−d, 1}
for any x ∈ Zd+1 and 1 ≤ i ≤ d+ 1. Functions in Ω are called height functions. If
f ∈ Ω and Λ ⊂⊂ Xd, then write γΛ(·, f) for the probability measure which draws a
height function uniformly at random from all height functions which agree to f on
the complement of Λ. This is a model of Lipschitz random surfaces; the differences
between this setup and that of Chapter 3 are cosmetic in nature. This means that all
results of that chapter apply. In particular, the surface tension associated with this
model, is strictly convex.

Generalised loops and the covariance structure

Fix f ∈ Ω and Λ ⊂⊂ Xd, and write µ for the probability measure γΛ(·, f). Write g
for the random function in µ. The first result concerns an identity for the covariance
structure of the random function g. In two dimensions, the covariance between g(x)
and g(y) is exactly 9

2 times the expectation of the number of loops in the double
dimer model in the measure µ× µ which surround both x and y. This is due to the
fact that the product measure µ× µ is invariant under resampling the orientation
of each loop in the double dimer model uniformly at random. The same is true in
higher dimensions, and this leads to the following result.

Theorem 1.4.16. In any dimension d ≥ 2, the covariance between g(x) and g(y)
in the measure µ, equals (d+ 1)2/2 times the number of generalised loops in µ× µ
which surround both x and y.

In Chapter 4, we spend a significant amount of time on constructing and studying
these generalised loops. We defer the complete, formal statement of the previous
result to that chapter. The same decomposition into generalised loops leads to a
strongly simplified version of Sheffield’s original proof for strict convexity of the
surface tension, for this specific model.
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The dual lattice

Let us introduce the hypergraph (Ud, Hd) which is dual to the simplicial lattice, and
generalises the hexagonal lattice. Each vertex of the simplicial lattice (Xd, Ed) has
2d + 2 neighbours; they are of the form [x ± ei] = [x] ± ei for 1 ≤ i ≤ d + 1. A
path (sk)0≤k≤n ⊂ Xd of length n = d+ 1 is called a simplicial loop if there exists a
permutation ξ ∈ Sd+1 such that sk = sk−1 + eξ(k) for any 1 ≤ k ≤ d+ 1. This implies
that s is closed because [x] + e1 + · · ·+ ed+1 = [x + n] = [x]. In this introductory
chapter, we consider two loops to be equal if they differ only by indexation, and
we write Ud for this set of unrooted simplicial loops. Let us index each unrooted
loop s ∈ Ud such that the increment ed+1 comes first. The loop is then completely
characterised by its starting point s0 and the order ξ ∈ Sd in which the remaining
increments appear. We identify each unrooted simplicial loop s with the corresponding
pair (s0, ξ) ∈ Xd × Sd.

Write h(e) ⊂ Ud for the set of unrooted simplicial loops traversing e, for any
e ∈ Ed. Write Hd for the set {h(e) : e ∈ Ed}. The hypergraph (Ud, Hd) is dual to
the simplicial lattice (Xd, Ed), and the map h : Ed → Hd is indeed a bijection. In
dimension d = 2, the graph (Ud, Hd) is the hexagonal lattice. Observe that h(e)
contains one simplicial loop in Xd × {ξ} for any permutation ξ ∈ Sd. The graph
(Ud, Hd) is therefore d!-regular and d!-partite, in the sense that each hyperedge
contains exactly one vertex of each member of the partition {Xd × {ξ} : ξ ∈ Sd}.

The generalised Kasteleyn theory

The final main result of Chapter 4 is that we express the normalising constant ZΛ(f)
in terms of the Cayley hyperdeterminant of the adjacency hypermatrix of (appropriate
restrictions) of the hypergraph (Ud, Hd). The normalising constant ZΛ(f), which is
also called the partition function, equals the number of height functions that equal f
on the complement of Λ.

We associate each height function f ∈ Ω with the set of edges

T (f) := {{x,x + ei} ∈ Ed : f(x + ei)− f(x) = −d}.

This set characterises the gradient of f . Moreover, since f(x + ei)− f(x) ∈ {1,−d},
it is easy to see that each simplicial loop contains exactly one edge of T (f). In
other words, the set h(T (f)) is a perfect matching of the hypergraph (Ud, Hd). We
demonstrate in Chapter 4 that each perfect matching of (Ud, Hd) is in fact of the
form h(T (f)) for some height function f ∈ Ω. The perfect matchings are thus in
bijection with the set {T (f) : f ∈ Ω}.

For any map A : {1, . . . , n}d! → C, define

DetA :=
∑

σ2,...,σd!∈Sn

([
d!∏
i=2

Signσi

][
n∏
k=1

A(k, σ2(k), . . . , σd!(k))

])

This expression is called the Cayley hyperdeterminant of A, and is the natural
generalisation of the determinant of a matrix to objects of higher rank.

Let us now explain how the Cayley hyperdeterminant is related to the number
of perfect matchings of (subgraphs of) the hypergraph (Ud, Hd), which is entirely
analogous to the classical Kasteleyn theory. Fix an enumeration {ξ1, . . . , ξd!} = Sd.
There is a natural bijection from the set of perfect matchings of (Ud, Hd) to the set
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of tuples of bijections (σi)2≤i≤d! where σi : Xd → Xd and which satisfy

{(x, ξ1), (σ2(x), ξ2), . . . , (σd!(x), ξd!)} ∈ Hd

for all x ∈ Xd. In other words, these perfect matchings would correspond exactly
to the nonzero terms in the sum in the definition of the determinant of the infinite
hypermatrix

A :
d!∏
i=1

Xd → {0, 1}, (x1, . . . ,xd!) 7→ 1
(
{(x1, ξ1), . . . , (xd!, ξd!)} ∈ Hd

)
,

which is of course not entirely well-defined. The same idea, suitably adapted to the
finite setting, yields the desired identity for the normalising constant ZΛ(f). In this
chapter, we shall not describe exactly how boundary conditions are encoded in the
choice of finite subgraph—for these details, we refer to Chapter 4.

Theorem 1.4.17. Consider a height function f and a finite set Λ ⊂⊂ Xd such that
its complement is connected. Then the partition function ZΛ(f) equals exactly the
absolute value of the Cayley hyperdeterminant of the adjacency hypermatrix of the
finite subgraph of (Ud, Hd) corresponding to these boundary conditions.

An interesting aspect of this theorem is that we do not require signs or complex
numbers to go from the adjacency hypermatrix to the Kasteleyn hypermatrix. Indeed,
it turns out that all nonzero terms in the sum defining the determinant have the same
sign. This fact is well-known for the two-dimensional dimer model on the hexagonal
lattice.
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Chapter 2
Variational principle for weakly
dependent random fields

Using an alternative notion of entropy introduced by Datta, the max-entropy, we
present a new simplified framework to study the minimisers of the specific free energy
for random fields which are weakly dependent in the sense of Lewis, Pfister, and
Sullivan. The framework is then applied to derive the variational principle for the
Loop O(n) model and the Ising model in a random percolation environment in the
nonmagnetic phase, and we explain how to extend the variational principle to similar
models. To demonstrate the generality of the framework, we indicate how to naturally
fit into it the variational principle for models with an absolutely summable interaction
potential, and for the random-cluster model.

2.1 Introduction

2.1.1 Random fields with long-range interactions
One of the great results in statistical physics is the variational principle, which asserts
that a shift-invariant infinite-volume measure is a Gibbs measure if and only if it
minimises the specific free energy. The class of models which fall under the scope
of the variational principle is extremely broad. Models for which the interaction
potential is absolutely summable were covered by Georgii [20]. There have been
numerous attempts to extend or generalise the variational principle beyond, often in
relation to a study of the points where continuity or quasilocality of the specification
fails. Such points are characterised by non-vanishing long-range interactions, and
appear naturally in, for example, the random-cluster model [24, 53], the Loop O(n)
model [46], and several models in a random environment such as the Ising model in a
percolation environment [15]. A non-exhaustive list of the study of the variational
principle for specifications which are not quasilocal includes [14, 48, 53, 42, 15, 16, 37].
Further investigation into the variational principle was carried out in relation to
renormalisation [38, 18], the large deviations principle [50, 51, 52], and projections or
restrictions of Gibbs measures [43, 60]. Other works on the variational principle in the
infinite-volume setting include [56, 63, 17]. The variational principle is known to fail
for some models, most notably the random field Ising model [37], which was known
to exhibit phase transition [3]. Despite those efforts there are still some interesting
models for which it is not known if the variational principle holds true or not. Among
those are various models of random fields in random environments: a noteworthy
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example is the Ising model on a random subgraph of the square lattice obtained
from independent percolation. The inherent problem derives from the fact that the
strength of the interactions between particles does not decay uniformly with the
range.

This model belongs to a large, natural class of models known as weakly dependent :
this term is due to Lewis, Pfister and Sullivan [39]. We develop a streamlined
framework for studying the minimisers of the specific free energy within this class.
The framework allows one to efficiently deduce the variational principle for many
interesting weakly dependent models. Our discussion reviews the absolutely summable
setting of [20], and the random-cluster model [53] (see [24] for a general introduction).
We break new ground by proving the variational principle for the Ising model in
a random environment, in the nonmagnetic phase. This significantly extends the
results of [37]. We furthermore deduce the variational principle for the Loop O(n)
model (see [46] for a general introduction) by extension of the discussion of the
random-cluster model, and we explain how these models represent any model where
the nonvanishing long-range interaction is due to a potential associated with clusters,
level sets, paths, or other large geometrical objects that arise from the local structure.

2.1.2 The specific free energy
The specific free energy and a suitable characterisation for it are of central importance
to the study of the variational principle. A natural first question is thus to ask about
restrictions on the model that guarantee that the specific free energy is well-behaved.
Candidates are the previously mentioned weakly dependent [39], and the more general
asymptotically decoupled. The latter was introduced by Pfister [47]. While either
restriction guarantees a well-defined specific free energy, the former is more amenable
to arguments involving regular conditional probability distributions, and is therefore
better for studying the variational principle. Remark that we shall define the specific
free energy in terms of the specification that characterises the model, unlike in [39, 47]
where it is defined in terms of a reference random field. Our definition of weakly
dependent is therefore cosmetically different.

There is a simple and natural definition of a weakly dependent specification once
we introduce the max-entropy of two measures. The max-entropy of some measure µ
relative to another measure ν equals

H∞(µ|ν) := log inf{λ ≥ 0 : µ ≤ λν},

and was introduced by Datta in [8]. We call a specification weakly dependent if the
max-entropy between any two finite-volume Gibbs measures on a box Λ ⊂ Zd is of
order o(|Λ|) as Λ grows large.

The class of weakly dependent models is rich, and it is not hard to prove that
the various models that were mentioned are all weakly dependent. If the model of
interest is weakly dependent, then the specific free energy has all the usual properties:
its level sets (which are sets of shift-invariant random fields) are compact in the
topology of local convergence, and there exist shift-invariant random fields that have
zero specific free energy.

2.1.3 Main results
Consider a weakly dependent specification. We call a random field a minimiser if it is
shift-invariant and has zero specific free energy with respect to this specification. It is
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a corollary of the definition of the specific free energy that shift-invariant Dobrushin-
Lanford-Ruelle (DLR) states are minimisers. We show that a shift-invariant random
field is a minimiser if and only if it is a limit of finite-volume Gibbs measures, where
we allow mixed boundary conditions. If µ is a minimiser, then we derive properties
of the conditional probability distribution of µ in a box Λ, conditioned on what
happens outside of Λ. If µ is supported on the points of continuity of the specification
corresponding to the model, then we show that µ is a DLR state, and almost Gibbs.
In general, we demonstrate that all minimisers have finite energy in the sense of
Burton and Keane, so that we are able to make their case for almost sure uniqueness
of the infinite cluster (if this is relevant for the model under consideration).

The variational principle asserts that the minimisers of the specific free energy
coincide with the shift-invariant almost Gibbs measures. The framework provides a
clear route to demonstrating its validity for weakly dependent models: it is sufficient
to prove that minimisers of the specific free energy are supported on the points of
continuity of the specification, and in deriving this one may assume all the properties
that minimisers of the specific free energy automatically have.

We apply the framework to all models that were previously mentioned. First,
we show how to fit into our framework the known variational principles for models
with an absolutely summable interaction potential [20], and for the random-cluster
model [53]. Then, we derive the variational principle for the Loop O(n) model, and
by extension we assert that the variational principle must hold true for a large class of
models where the long-range interaction is due to weight on percolation clusters (such
as for the random-cluster model), level sets, loops, or other large geometrical objects
which arise from the local structure. Next, we derive the variational principle for the
Ising model in a random percolation environment in the nonmagnetic phase. This
improves upon the work of [37], where the same result is established for the phase
where the random environment does not percolate. The authors believe that for a
large class of models in a random environment, the proposed framework significantly
reduces the complexity of determining whether or not the variational principle holds
true.

Finally, it should be remarked that in all our work we shall never require the state
space to be finite; the framework works for any standard Borel space, much like the
setting of Georgii [20].

2.1.4 Structure of the chapter

The chapter is organised as follows. In Section 2.2 we introduce the various mathe-
matical objects necessary to define and study the specific free energy. In Section 2.3
we give a presentation of our main results. In Section 2.4 we show how to define the
specific free energy for weakly dependent specifications, and we prove some of its
properties. In Section 2.5 we give a characterisation of the minimisers of the specific
free energy. In Section 2.6 we show how to derive easily from our framework various
versions of the variational principle.

2.2 Definitions

If (X,X ) is any measurable space, then write P(X,X ) for the set of probability
measures on (X,X ), andM(X,X ) for the set of σ-finite measures µ with µ(X) > 0.
In this chapter we only consider measurable spaces that are standard Borel spaces.
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We shall follow the notation of Georgii [20] wherever possible.

2.2.1 Random fields
We are concerned with the study of random fields. Fix a dimension d ∈ N and a
standard Borel space (E, E) throughout this chapter. The set S := Zd is called the
parameter set, and (E, E) is called the state space. Elements of S are called sites. A
configuration is a function ω that assigns to each site x ∈ S a state ωx ∈ E. Write
Ω := ES for the set of configurations, and F for the product σ-algebra ES on Ω. A
random field is a probability measure on configurations: the set of random fields is
P(Ω,F).

Define, for each site x ∈ S, the measurable function πx : Ω → E, ω 7→ ωx. For
any Λ ⊂ S, we shall write FΛ := σ(πx : x ∈ Λ) ⊂ F . Write furthermore πΛ for the
canonical projection map Ω = ES → EΛ, and observe that πΛ extends canonically to
a bijection from FΛ to EΛ and to a bijection from P(Ω,FΛ) to P(EΛ, EΛ). Define
ωΛ := πΛ(ω) for ω ∈ Ω, and if µ ∈ P(Ω,X ) for some FΛ ⊂ X ⊂ F , then write
µΛ := πΛ(µ) ∈ P(EΛ, EΛ). If f is an FΛ-measurable function on Ω and g an EΛ-
measurable function on EΛ, then we shall without further notice write f for the
EΛ-measurable function f ◦ π−1

Λ on EΛ and g for the FΛ-measurable function g ◦ πΛ

on Ω. Finally, if Λ ⊂ ∆ ⊂ S, then write also πΛ for the canonical projection map
E∆ → EΛ, and if ω ∈ EΛ and ζ ∈ E∆rΛ, then write ωζ for the unique element of
E∆ such that πΛ(ωζ) = ω and π∆rΛ(ωζ) = ζ.

Define, for every x ∈ Zd, the map θx : Zd → Zd, y 7→ y + x. Each map θx is
called a shift. Write Θ for the set of shifts, that is, Θ = {θx : x ∈ Zd}. If ω ∈ Ω
and θ ∈ Θ, then write θω for the configuration in Ω satisfying (θω)x = ωθx for every
x ∈ S. Similarly, define θA := {θω : ω ∈ A} for A ∈ F . A random field µ ∈ P(Ω,F)
is called shift-invariant if µ(θA) = µ(A) for any A ∈ F and θ ∈ Θ. Write PΘ(Ω,F)
for the collection of shift-invariant random fields.

2.2.2 Entropy and max-entropy
Consider two σ-finite measures µ, ν ∈ M(X,X ) on a standard Borel space (X,X ).
The entropy of µ relative to ν is defined by

H(µ|ν) :=

{
µ(log f) = ν(f log f) if µ� ν where f := dµ/dν,
∞ otherwise.

The max-entropy of µ relative to ν is defined by

H∞(µ|ν) := log inf{λ ≥ 0 : µ ≤ λν} =

{
ess sup log f if µ� ν where f := dµ/dν,
∞ otherwise.

Note that both entropies are nonnegative when µ and ν are probability measures—if
they are indeed probability measures, then each entropy equals zero if and only
if µ = ν. If Y is a sub-σ-algebra of X , then define HY(µ|ν) := H(µ|Y |ν|Y). If
(X,X ) = (Ω,F) and Λ ∈ S, then abbreviate HFΛ

(µ|ν) to HΛ(µ|ν). Introduce a
similar definition for H∞Λ (µ|ν). Finally, define the max-diameter of a nonempty set
A ⊂M(X,X ) by

Diam∞A := sup
µ,ν∈A

H∞(µ|ν) ≥ 0,

where we observe equality if and only if A contains exactly one measure.
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For probability measures µ, ν ∈ P(X,X ), we always have H(µ|ν) ≤ H∞(µ|ν).
It is possible however that H∞(µ|ν) is large and H(µ|ν) small, for example if the
Radon-Nikodym derivative f := dµ/dν is large on a very small portion of (X,X ).
The max-entropy should be understood as a sort of L∞-version of the usual entropy.
The max-entropy and the max-diameter prove to be efficient tools for selecting the
class of models for which the theory in this chapter works. The usual entropy however,
is sometimes easier to work with due to a number of standard identities that are
available; see for example (2.4.2) in the proof of Lemma 2.4.1.

2.2.3 Weakly dependent specifications
A specification is a family γ = (γΛ)Λ∈S with the following properties:

1. Each member γΛ is a probability kernel from (Ω,FSrΛ) to (Ω,F),

2. Each member γΛ satisfies γΛ(A,ω) = 1(ω ∈ A) whenever A ∈ FSrΛ,

3. If Λ ⊂ ∆ ∈ S, then γ∆ = γ∆γΛ.

A member γΛ is called proper if it has the second property; the family γ is called
consistent if it has the third property. We fix a specification γ throughout this chapter.
The specification γ is called shift-invariant if γθΛ(A,ω) = γΛ(θA, θω) for any Λ ∈ S,
A ∈ F , ω ∈ Ω, θ ∈ Θ.

Fix Λ ∈ S, and consider γΛ: this is a probability kernel from (Ω,FSrΛ) to
(Ω,F). Write γ̂Λ for the unique probability kernel from (Ω,FSrΛ) to (EΛ, EΛ)
such that γ̂Λ(·, ω) = πΛ(γΛ(·, ω)) for every ω ∈ Ω. The measure γ̂Λ(·, ω) is the
finite-volume Gibbs measure on (EΛ, EΛ) with deterministic boundary conditions ω.
Of course, the original kernel γΛ can be recovered from γ̂Λ through the equation
γΛ(·, ω) = γ̂Λ(·, ω)× δωSrΛ—this is because γΛ is proper. It is often more convenient
to define γ̂Λ than γΛ when describing a specific model.

Now fix a random field µ ∈ P(Ω,F), and consider the finite-volume measure µγ̂Λ.
This is the finite-volume Gibbs measure on (EΛ, EΛ) with mixed boundary conditions
µ. Define

AΛ(γ) := {µγ̂Λ : µ ∈ P(Ω,F)} ⊂ P(EΛ, EΛ) :

the set of all such finite-volume Gibbs measures. This set is convex because the set
of all random fields is convex. For each n ∈ N, we use the notation ∆n for the box

∆n := {−n, . . . , n}d ∈ S.

The specification γ is called weakly dependent if γ is shift-invariant and satisfies

Diam∞A∆n(γ) = o(|∆n|)

as n→∞. For technical reasons we also require that Diam∞AΛ(γ) is finite for any
Λ ∈ S; this additional condition is not restrictive. Write S for the collection of weakly
dependent specifications.

Before proceeding, it is useful to remark that

Diam∞AΛ(γ) := sup
µ,ν
H∞(µγ̂Λ|νγ̂Λ) = sup

ω,ζ
H∞(γ̂Λ(·, ω)|γ̂Λ(·, ζ));

it is sufficient to consider deterministic boundary conditions in calculating the max-
diameter of AΛ(γ). This can be deduced from Fubini’s theorem without effort.
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2.2.4 The specific free energy
Consider a shift-invariant random field µ and a weakly dependent specification γ.
The specific free energy (SFE) of µ relative to γ is defined by

h(µ|γ) := lim
n→∞

|∆n|−1H∆n(µ|νγ∆n) ∈ [0,∞]

where ν ∈ P(Ω,F). Lemma 2.4.4 asserts that the limit exists for any ν, and that
this limit is independent of the choice of ν. A shift-invariant random field µ with
h(µ|γ) = 0 is called a minimiser of γ. Write h0(γ) for the set of minimisers of γ.

Now take the perspective of a shift-invariant random field µ. The random field
µ is called weakly dependent if µ ∈ h0(γ) for some weakly dependent specification
γ. Write F for the collection of weakly dependent random fields. If µ is an arbitrary
shift-invariant random field and ν a weakly dependent random field, then the specific
free energy (SFE) of µ relative to ν is defined by

h(µ|ν) := lim
n→∞

|∆n|−1H∆n(µ|ν) ∈ [0,∞].

Lemma 2.5.10 asserts that the limit converges for any choice of µ and ν. The quantity
h(µ|ν) is also sometimes called the entropy density of µ with respect to ν. Write h0(ν)
for the set of shift-invariant random fields µ with h(µ|ν) = 0. Measures µ ∈ h0(ν)
are called minimisers of ν.

2.2.5 DLR states
Now consider a random field µ and a finite set Λ ∈ S. Write µωΛ for the regular
conditional probability distribution (r.c.p.d.) on (EΛ, EΛ) of µ corresponding to the
projection map πSrΛ : Ω → ESrΛ. Informally, this is the distribution of ωΛ in µ
given the states of ω outside Λ. Suppose that we are given an arbitrary specification
γ. A Dobrushin-Lanford-Ruelle (DLR) state is a random field µ ∈ P(Ω,F) which
satisfies the DLR equation µ = µγΛ for every Λ ∈ S. In other words, µ is a DLR
state if and only if µωΛ = γ̂(·, ω) for µ-almost every ω ∈ Ω, for each Λ ∈ S. Write G(γ)
for the set of DLR states, and GΘ(γ) := G(γ)∩PΘ(Ω,F) for the set of shift-invariant
DLR states.

2.2.6 Topologies
The topology of local convergence or L-topology on Ω is the coarsest topology on Ω
that makes the map ω 7→ ωx continuous for every x ∈ Zd, with respect to the discrete
topology on E. This means that ωn → ω if and only if for any Λ ∈ S, we have
ωnΛ = ωΛ for n sufficiently large.

Consider an arbitrary standard Borel space (X,X ). The strong topology on
M(X,X ) is the coarsest topology that makes the map µ 7→ µ(A) continuous for
every A ∈ X . If A ⊂ P(X,X ) is a convex set of probability measures subject to
Diam∞A being finite, then write C(A) for the closure of A in the strong topology.
In Lemma 2.5.1 we present an alternative definition for C(A), which we demonstrate
is equivalent.

The topology of local convergence or L-topology on P(Ω,F) is the coarsest topology
on P(Ω,F) that makes the map µ 7→ µ(A) continuous for every A ∈ ∪Λ∈SFΛ. This
means that µn → µ in the L-topology if and only if πΛ(µn) → µΛ in the strong
topology on P(EΛ, EΛ) for every Λ ∈ S.
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Remark that we do not assume a topology on the state space E. A topology is
not even implied, because the L-topology on measures originates from the strong
topology on measures. In some sense, the L-topology thus alludes to the discrete
topology on E—this holds true both when considered a topology on Ω, and when
considered a topology on P(Ω,F).

2.2.7 Limits of finite-volume Gibbs measures

Let γ be a weakly dependent specification. Write W(γ) for the set of limits of
finite-volume Gibbs measures in the L-topology, that is,

W(γ) :=

{µ ∈ P(Ω,F) : νnγ∆n → µ in the L-topology for some (νn)n∈N ⊂ P(Ω,F)} .

It is immediate that G(γ) ⊂ W(γ): if µ ∈ G(γ), then µγ∆n → µ and therefore
µ ∈ W(γ). We write νnγ∆n in this definition and not νnγ̂∆n so that all measures
live in the same space and convergence in the L-topology makes sense. For simplicity
the definition is in terms of the exhaustive sequence (∆n)n∈N; it is straightforward
to verify that the definition is the same if we replace this sequence by any other
increasing exhaustive sequence. Write WΘ(γ) :=W(γ) ∩ PΘ(Ω,F). We shall later
see that h0(γ) =WΘ(γ).

2.2.8 Continuity of the specification

Consider a weakly dependent specification γ. We are going to define more sets
of finite-volume Gibbs measures, now restricting the boundary conditions that are
allowed. For any Λ,∆ ∈ S and ω ∈ Ω, define

AΛ,∆,ω(γ) := {µγ̂Λ : µ ∈ P(Ω,F) such that µ∆ = δω∆} ⊂ AΛ(γ).

The sets AΛ(γ) and AΛ,∆,ω(γ) are convex, and AΛ,∆,ω(γ) is decreasing in ∆. Define

AΛ,ω(γ) := ∩∆∈SC(AΛ,∆,ω(γ)) = ∩n∈NC(AΛ,∆n,ω(γ)).

Consider a measure µ ∈ P(EΛ, EΛ). Then µ ∈ AΛ,ω if and only if νnγ̂Λ → µ in the
strong topology for some sequence of random fields (νn)n∈N converging to δω in the
L-topology.

Observe that the alternative characterisation of AΛ,ω(γ) implies the inclusion
δωγ̂Λ = γ̂Λ(·, ω) ∈ AΛ,ω(γ). Define

Ωγ := {ω ∈ Ω : AΛ,ω(γ) = {γ̂Λ(·, ω)} for any Λ ∈ S}
= {ω ∈ Ω : |AΛ,ω(γ)| = 1 for any Λ ∈ S}.

In other words, Ωγ is the set of configurations ω ∈ Ω such that the map ζ 7→ γΛ(·, ζ) is
continuous—both sides endowed with the L-topology—at ω for any Λ ∈ S. If ω ∈ Ωγ ,
then we say that the specification γ is continuous or quasilocal at ω. If Ωγ = Ω, then
each DLR state of γ is also called a Gibbs measure. If µ ∈ G(γ) and µ(Ωγ) = 1, then
µ is called an almost Gibbs measure. This makes sense even if Ωγ 6= Ω.
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2.3 Main results

2.3.1 The specific free energy
Consider a weakly dependent specification γ. We prove that for any shift-invariant
random field µ, the SFE

h(µ|γ) := lim
n→∞

|∆n|−1H∆n(µ|νγ∆n) ∈ [0,∞]

is well-defined, and independent of the choice of ν ∈ P(Ω,F) (Lemma 2.4.4). More-
over, we show that the level sets of the SFE—given by {h(·|γ) ≤ C} ⊂ PΘ(Ω,F)
for C ∈ [0,∞)—are compact in the topology of local convergence, and that h0(γ) =
{h(·|γ) = 0} is nonempty (Lemma 2.4.10). We prove the first half of the variational
principle, which asserts that GΘ(γ) ⊂ h0(γ) (Corollary 2.4.9).

2.3.2 Minimisers of the specific free energy
Next, we focus on the set of minimisers h0(γ) of the weakly dependent specification
γ. We find some alternative characterisations for the set of minimisers. In particular,
if µ is a shift-invariant random field, then the following are equivalent:

1. µ ∈ h0(γ), that is, µ is a minimiser of γ,

2. µ ∈ W(γ), that is, µ is a limit of finite-volume Gibbs measures,

3. µ∆n ∈ C(A∆n(γ)) for each n ∈ N;

see Lemma 2.5.6 and Corollary 2.5.5. Moreover, if µ is a minimiser, then we demon-
strate that

1. µ is almost Gibbs if µ(Ωγ) = 1,

2. µωΛ ∈ AΛ,ω for µ-almost every ω, for each Λ ∈ S,

3. µ has finite energy, in the sense of Burton and Keane.

The first statement follows almost immediately from the second, see Lemma 2.5.7 and
Corollary 2.5.8. The third statement requires a short argument, see Corollary 2.5.9.

2.3.3 The relation between F and S

Now take a more abstract viewpoint, and consider the set of all weakly dependent
random fields F. Choose a weakly dependent specification γ ∈ S and a minimiser
ν ∈ F of γ. First, we prove that h(µ|ν) is well-defined and equal to h(µ|γ) for
any shift-invariant random field µ (Lemma 2.5.10). This implies in particular that
h0(ν) = h0(γ). For µ, ν ∈ F, we declare µ ∼ ν if h(µ|ν) = 0. We prove that ∼ is an
equivalence relation. Write F∗ for the partition of F into equivalence classes. This
provides a canonical way to partition the set of specifications S as well: define the
map

Ξ : S→ F∗, γ 7→ h0(γ),

and write S∗ for the partition of S into the level sets of Ξ. This makes Ξ into a
bijection from S∗ to F∗—the original map Ξ was surjective by definition a weakly
dependent random field.
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2.3.4 The variational principle in the weakly dependent setting
Consider a weakly dependent specification γ. The previous results provide efficient
machinery for attacking the variational principle. Consider an arbitrary shift-invariant
random field µ. The variational principle asserts that

µ ∈ h0(γ) ⇐⇒ µ is almost Gibbs with respect to γ. (2.3.1)

To prove the variational principle for the model of interest, we must always derive
two results. First, we must show that the specification γ corresponding to the model
is indeed weakly dependent. Second, one must show that µ(Ωγ) = 1 for any minimiser
µ of γ. The variational principle then follows from Corollaries 2.4.9 and 2.5.8.

Once weak dependence of the specification has been established, the systematic
study of the minimisers of the SFE provides a number of useful properties that
minimisers of the SFE automatically have—see Subsection 2.3.2. This usually makes
it easier to prove that µ(Ωγ) = 1 for arbitrary minimisers µ.

We chose to formulate the variational principle with respect to the standard
entropy functional H. It is also possible to use the max-entropy H∞ for this purpose.
To that end, simply replace the set h0(γ) in (2.3.1) with the set

h∞0 (γ) :=
{
µ ∈ PΘ(Ω,F) : |∆n|−1H∞∆n

(µ|νγ∆n)→ 0
}
.

We shall derive that h∞0 (γ) = h0(γ) for any weakly dependent specification γ. The
inclusion h∞0 (γ) ⊂ h0(γ) follows from the fact that H∞(µ|ν) ≥ H(µ|ν) for any
µ, ν ∈ P(X,X ). The other inclusion follows from Lemma 2.5.1 and Corollary 2.5.5,
jointly with the definition of a weakly dependent specification.

2.3.5 Applications
The weakly dependent setting is very general: it contains most nonpathological
non-gradient models that do not have some form of combinatorial exclusion (such as
for example the dimer models, which have a non-gradient interpretation but which
are not weakly dependent). We start by showing how to naturally fit two known
variational principles into our framework. Then we derive the variational principle
for the Loop O(n) model, and finally we derive new results for the Ising model in a
random percolation environment.

In Subsection 2.6.1, we show how to efficiently derive the variational principle
for models that are defined in terms of an absolutely summable interaction potential.
This setting is treated in the classical work of Georgii [20]. For such models we
find that Ω = Ωγ , meaning that all almost Gibbs measures are in fact Gibbs. In
Subsection 2.6.2, we show how to derive the variational principle for the random-
cluster model. The original proof is due to Seppäläinen [53]. The proofs (the one of
Seppäläinen and the one presented here) rely on the finite energy of minimisers of
the SFE, which implies that there is at most one infinite cluster almost surely with
respect to such measures (see Burton and Keane [4]). In Subsection 2.6.3, we discuss
how to derive the variational principle for the Loop O(n) model, by analogy with
the random-cluster model. This result is new. We also discuss how to derive the
variational principle for similar models. In Subsection 2.6.4, we prove the variational
principle for the Ising model in a random percolation environment, in the nonmagnetic
phase. Moreover, we demonstrate that the minimiser of the SFE is unique. This
is a new result. The variational principle was previously derived for the subcritical
percolation phase in [37].
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2.4 The specific free energy
This section has two main goals. The first goal is to prove Lemma 2.4.4, which asserts
that the SFE is well-defined for weakly dependent specifications. It also provides some
useful identities. As an immediate corollary we observe that DLR states minimise
the SFE. The second goal is to prove Lemma 2.4.10, which asserts that the level sets
of the SFE are compact in the L-topology, and that there exist measures with zero
SFE.

2.4.1 Consistency of the definition
The definition of the SFE relies on two key lemmas. Lemma 2.4.1 concerns super-
additivity of a useful quantity. Lemma 2.4.3 bounds the difference of two relative
entropies in terms of the max-entropy.

Lemma 2.4.1. Let γ denote any specification and µ a random field. Consider a
finite pairwise disjoint family of finite sets (Λk)1≤k≤n ⊂ S, and write Λ := ∪kΛk ∈ S.
Then

inf
ρ∈P(Ω,F)

HΛ(µ|ργΛ) ≥
∑
k

inf
ρ∈P(Ω,F)

HΛk(µ|ργΛk).

Proof. Fix ν ∈ P(Ω,F), and replace ν by νγΛ if the two are not equal. We must
demonstrate that

HΛ(µ|ν) ≥
∑
k

inf
ρ∈P(Ω,F)

HΛk(µ|ργΛk).

By induction, it is sufficient to consider the case n = 2. We have

HΛ(µ|ν) = HΛ1(µ|ν) +

∫
EΛ1

HΛ2(µζ |νζ)dµΛ1(ζ), (2.4.2)

where µζ and νζ denote the r.c.p.d. on (Ω,F) of µ and ν respectively corresponding
to the projection map Ω→ EΛ1 . Recall that ν = νγΛ. For the first term on the right
in (2.4.2), consistency of γ implies that ν = νγΛ1 and

HΛ1(µ|ν) = HΛ1(µ|νγΛ1) ≥ inf
ρ∈P(Ω,F)

HΛ1(µ|ργΛ1).

The goal is to obtain a similar lower bound for the integral in (2.4.2). Assume in
the sequel that HΛ1(µ|ν) is finite; the lemma follows from (2.4.2) if it is not. This
means in particular that µΛ1 � νΛ1 . Formally, µζ and νζ are probability kernels
from (EΛ1 , EΛ1) to (Ω,F), which may be measured by µΛ1 . Moreover, these kernels
satisfy πΛ1(µζ) = πΛ1(νζ) = δζ . First we assert that∫

EΛ1

HΛ2(µζ |νζ)dµΛ1(ζ) = HΛ(µΛ1µ
ζ |µΛ1ν

ζ).

It is straightforward to see that this holds true: an expansion of the expression on
the right in this display similar to the expansion in (2.4.2) yields the integral on
the left plus the entropy term H(µΛ1 , µΛ1) = 0. It is clear that µΛ1µ

ζ = µ. For the
other kernel, we observe that νζ = νζγΛ2 by consistency for νΛ1-almost every ζ, and
therefore also for µΛ1-almost every ζ. In particular, this means that

HΛ(µΛ1µ
ζ |µΛ1ν

ζ) = HΛ(µ|µΛ1ν
ζγΛ2) ≥ HΛ2(µ|µΛ1ν

ζγΛ2) ≥ inf
ρ∈P(Ω,F)

HΛ2(µ|ργΛ2).
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Lemma 2.4.3. Let (X,X ) denote a measurable space, and consider A ⊂M(X,X )
with Diam∞A finite. Then for any finite measure µ ∈M(X,X ) and for any ν, ν ′ ∈ A,
we have

|H(µ|ν)−H(µ|ν ′)| ≤ µ(X) Diam∞A,

where we interpret |∞ −∞| as 0.

Proof. Note that µ� ν if and only if µ� ν ′. Write f := dµ/dν and f ′ := dµ/dν ′.
Then µ-almost everywhere dν/dν ′ = f ′/f and | log f ′ − log f | ≤ Diam∞A. In
particular,

|H(µ|ν)−H(µ|ν ′)| = |µ(log f)− µ(log f ′)| ≤ µ(| log f − log f ′|) ≤ µ(X) Diam∞A.

Lemma 2.4.4. The specific free energy functional h(·|γ) : PΘ(Ω,F)→ [0,∞] satisfies

h(µ|γ) := limn→∞|∆n|−1H∆n(µ|νγ∆n) (2.4.5)

= supn∈N |∆n|−1(H∆n(µ|νγ∆n)−Diam∞A∆n(γ)) (2.4.6)

= limn→∞|∆n|−1 infρ∈P(Ω,F)H∆n(µ|ργ∆n) (2.4.7)

= supn∈N |∆n|−1 infρ∈P(Ω,F)H∆n(µ|ργ∆n) (2.4.8)

for any weakly dependent specification γ and for any ν ∈ P(Ω,F).

Proof. Together, Lemma 2.4.1 of the current chapter and Lemma 15.11 of [20] assert
that the sequence in (2.4.7) converges, with limit (2.4.8). Lemma 2.4.3 and weak
dependence of γ imply that for any ν ∈ P(Ω,F),∣∣H∆n(µ|νγ∆n)− infρ∈P(Ω,F)H∆n(µ|ργ∆n)

∣∣ ≤ Diam∞A∆n(γ) = o(|∆n|)

as n → ∞. This means that (2.4.5) and (2.4.7) are the same. The inequality in
the display implies that each term in the supremum in (2.4.6) is bounded from
above by the corresponding term in (2.4.8), and therefore the supremum in (2.4.6) is
bounded from above by the supremum in (2.4.8). However, the asymptotic bound
on Diam∞A∆n(γ) implies that the supremum in (2.4.6) equals at least the limit in
(2.4.5). Conclude that (2.4.5), (2.4.6), (2.4.7) and (2.4.8) are all equal.

Corollary 2.4.9. We have GΘ(γ) ⊂ h0(γ) whenever γ is weakly dependent.

Proof. Consider µ ∈ GΘ(γ), and apply the previous lemma with ν = µ.

2.4.2 Minimisers and level sets
Lemma 2.4.10. Let γ denote a weakly dependent specification. Then {h(·|γ) ≤ C}
is nonempty and compact in the L-topology for any C ∈ [0,∞). In particular, h0(γ)
is nonempty and compact in the L-topology.

Proof. The motivation for this lemma is standard; we include a proof for completeness.
Fix a measure ν ∈ PΘ(Ω,F) and a constant C ∈ [0,∞). Level sets of relative entropy
are compact: in our setting

Pn,C := {µ ∈ P(E∆n , E∆n) : H(µ|νγ̂∆n) ≤ |∆n|C + Diam∞A∆n(γ)}
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is compact in the strong topology on P(E∆n , E∆n) for any n ∈ N. Equation 2.4.6 of
Lemma 2.4.4 says that

{h(·|γ) ≤ C} = ∩n∈N{µ ∈ PΘ(Ω,F) : µ∆n ∈ Pn,C}.

Let (µm)m∈N ⊂ P(Ω,F) denote a sequence of random fields—not necessarily shift-
invariant—such that for any fixed n ∈ N, we have π∆n(µm) ∈ Pn,C for m sufficiently
large. By compactness of each set Pn,C , a standard diagonalisation argument, and
the Kolmogorov extension theorem, we obtain a subsequential limit µ ∈ P(Ω,F) of
(µm)m∈N in the L-topology with the property that µ∆n ∈ Pn,C for each n ∈ N.

For the lemma, it suffices to prove that {h(·|γ) ≤ C} is compact and that h0(γ)
is nonempty. Start with the former. Suppose that (µm)m∈N ⊂ {h(·|γ) ≤ C}. Then
π∆n(µm) ∈ Pn,C for any n,m ∈ N. Apply the previous argument to obtain a
subsequential limit µ ∈ P(Ω,F). Then µ must be shift-invariant because each µm is
shift-invariant. The argument says moreover that µ∆n ∈ Pn,C for each n ∈ N, that
is, h(µ|γ) ≤ C. This proves that the level set {h(·|γ) ≤ C} is compact. Finally, we
prove that h0(γ) is nonempty. Set C to 0, and define

µm :=
1

|∆m|
∑
x∈∆m

νγ∆2m+x =
1

|∆m|
∑
x∈∆m

θxνγ∆2m .

The two measures are equal because ν is shift-invariant, and it is clear that any
subsequential limit of (µm)m∈N is also shift-invariant. Moreover, µmγ∆n = µm

whenever m ≥ n because ∆n ⊂ ∆m ⊂ ∆2m + x for any x ∈ ∆m. This means that
π∆n(µm) ∈ Pn,0 for m sufficiently large, for each fixed n ∈ N. The sequence thus has
a subsequential limit µ in the L-topology. This limit µ must satisfy µ∆n ∈ Pn,0 for
any n. Conclude that µ ∈ h0(γ), that is, h0(γ) is nonempty.

2.5 Minimisers of the specific free energy

2.5.1 Mazur’s lemma
Lemma 2.5.1. Let (X,X ) denote a standard Borel space and A a convex subset of
P(X,X ) subject to Diam∞A being finite. Then the set

C := C(A) := {µ ∈ P(X,X ) : infν∈AH(µ|ν) = 0}

is compact in the strong topology on P(X,X ), satisfies Diam∞ C = Diam∞A, and
equals

1. The closure of A in the total variation topology,

2. The closure of A in the strong topology.

This lemma is close to trivial when E is finite, which is the case for many, but
certainly not all, interesting models. It is this lemma that makes the theory work
also for models where (E, E) is a general standard Borel space. The lemma comes
down to a straightforward application of Mazur’s lemma: a well-known result from
functional analysis. Remark that there is a confusing difference in naming conventions
for topologies between functional analysis and measure theory, when the topologies
are on sets of (probability) measures.
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Proof of Lemma 2.5.1. Fix a measure λ ∈ A; this measure will serve as reference
measure. Write fµ := dµ/dλ for any σ-finite measure µ on (X,X ) that is absolutely
continuous with respect to λ. For example, if µ ∈ A, then λ-almost everywhere
| log fµ| ≤ Diam∞A. In particular, the map µ 7→ fµ injects A into L1(λ)—the image
of A under this map is also convex. Write f− for the lattice infimum of the family
{fµ : µ ∈ A}; this is the largest X -measurable function such that λ-almost everywhere
f− ≤ fµ for each µ ∈ A. See Lemma 2.6 in [27] for existence and uniqueness of
f− ∈ L1(λ). Similarly, write f+ for the lattice supremum of {fµ : µ ∈ A}. Observe
that λ-almost everywhere f− ≤ 1 ≤ f+ and

0 ≤ log
f+

f−
≤ Diam∞A;

the former because λ ∈ A, the latter follows from the definition of the diameter. In
particular,

e−Diam∞A ≤ ess infλ f
± ≤ ess supλ f

± ≤ eDiam∞A.

Define the measures λ± := f±λ—these should be considered the lattice infimum and
supremum of the set A, and are independent of the choice of reference measure λ ∈ A.
A measure µ ∈ P(X,X ) must satisfy λ− ≤ µ ≤ λ+ if either µ ∈ C, or if µ is in the
closure of A in the total variation topology, or if µ is in the closure of A in the strong
topology. This also implies that λ-almost everywhere f− ≤ fµ ≤ f+.

We first show that Diam∞ C = Diam∞A. The previous observation implies that

Diam∞ C ≤ Diam∞{µ ∈ P(X,X ) : λ− ≤ µ ≤ λ+} = H∞(λ+|λ−) = Diam∞A.

Now A ⊂ C and therefore Diam∞A ≤ Diam∞ C: we conclude that Diam∞ C =
Diam∞A.

Fix a probability measure µ subject to λ− ≤ µ ≤ λ+; the goal is to show that
µ ∈ C if and only if µ is contained in the closure of A in the total variation topology.
Fix a sequence (νn)n∈N ⊂ A. Observe that dµ/dνn = fµ/fνn , and that

H(µ|νn) = νn

(
fµ
fνn

log
fµ
fνn

)
= νn

(
Ξ
(
fµ
fνn

))
,

where Ξ : (0,∞) → [0,∞) is defined by Ξ(x) := 1− x+ x log x. The function Ξ is
convex and attains its minimum 0 at x = 1 only. We observe that, as n→∞,

H(µ|νn)→ 0 ⇐⇒ νn(Ξ(fµ/fνn))→ 0

⇐⇒ λ(Ξ(fµ/fνn))→ 0 (2.5.2)

⇐⇒ fνn → fµ in L1(λ) (2.5.3)
⇐⇒ νn → µ in total variation. (2.5.4)

The equivalence in (2.5.2) is due to the fact that e−Diam∞Aλ ≤ νn ≤ eDiam∞Aλ for
each n ∈ N, and nonnegativity of Ξ. Equivalence in (2.5.3) is due to said properties
of the function Ξ, and the fact that all functions fµ and fνn are uniformly bounded
away from zero and infinity. Equivalence in (2.5.4) is straightforward as λ(|fνn − fµ|)
equals the total variation distance from νn to µ. We have now proven that C equals
the closure of A in the total variation topology.

Claim that the closure of A in the total variation topology equals the closure of
A in the strong topology. The map µ 7→ fµ is a bijection from the closure of A in the
total variation topology to the closure of {fµ : µ ∈ A} in the norm topology on L1(λ).
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The map µ 7→ fµ is also a bijection from the closure of A in the strong topology to
the closure of {fµ : µ ∈ A} in the weak topology on L1(λ). The set {fµ : µ ∈ A}
is convex, and therefore Mazur’s lemma asserts that the closure of {fµ : µ ∈ A} in
L1(λ) is the same for the norm topology and for the weak topology.

The set C is compact in the strong topology because it is closed in the strong
topology and has finite max-diameter: it is a subset of the compact set {µ ∈ P(X,X ) :
H(µ|λ) ≤ Diam∞ C}.

Corollary 2.5.5. Consider a weakly dependent specification γ, and a shift-invariant
random field µ. Then µ ∈ h0(γ) if and only if µ∆n ∈ C(A∆n(γ)) for each n ∈ N.

Proof. This is due to (2.4.8) of Lemma 2.4.4 in combination with Lemma 2.5.1.

2.5.2 Limits of finite-volume Gibbs measures
Lemma 2.5.6. If γ is a weakly dependent specification, then h0(γ) =WΘ(γ).

Proof. If µ ∈ WΘ(γ), then µ∆n ∈ C(A∆n(γ)) by definition of W(γ), and therefore
µ ∈ h0(γ) by Corollary 2.5.5. Now consider µ ∈ h0(γ). For the lemma, it suffices
to prove that µ ∈ WΘ(γ). Again, Corollary 2.5.5 says that µ∆n ∈ C(A∆n(γ)) for
each n ∈ N. Write d(·, ·) for total variation distance. Lemma 2.5.1 implies that there
exists a sequence of measures (νn)n∈N ⊂ P(Ω,F) such that

d(µ∆n , ν
nγ̂∆n) ≤ 1/n

for each n ∈ N. Now for any m ≥ n, we observe that

d(µ∆n , π∆n(νmγ∆m)) ≤ d(µ∆m , π∆m(νmγ∆m)) = d(µ∆m , ν
mγ̂∆m) ≤ 1/m.

In particular, π∆n(νmγ∆m) approaches µ∆n in the total variation topology asm→∞,
and therefore also in the strong topology. Conclude that νmγ∆m → µ in the topology
of local convergence as m→∞. In other words, µ ∈ WΘ(γ).

2.5.3 Regular conditional probability distributions

Recall that µωΛ denotes the r.c.p.d. on (EΛ, EΛ) of µ corresponding to the projection
map πSrΛ : Ω→ ESrΛ, where µ ∈ P(Ω,F) is an arbitrary random field, and Λ ∈ S.
Recall also that we use the notation AΛ,ω(γ) for the set

AΛ,ω(γ) := ∩∆∈SC(AΛ,∆,ω(γ)) = ∩n∈NC(AΛ,∆n,ω(γ)).

Lemma 2.5.7. Let γ be a weakly dependent specification, and fix a minimiser µ ∈
h0(γ) and a finite set Λ ∈ S. Then the r.c.p.d. of µ satisfies µωΛ ∈ AΛ,ω(γ) for
µ-almost every ω.

Proof. Fix an arbitrary set ∆ ∈ S that contains Λ. For the lemma it suffices to
show that µωΛ ∈ C(AΛ,∆,ω(γ)) for µ-almost every ω. Write µωn for the r.c.p.d. of µ on
(EΛ, EΛ) corresponding to the natural projection map π∆nrΛ : Ω→ E∆nrΛ; we are
only interested in n so large that ∆n ⊃ ∆. For such n, we claim that

µωn ∈ C(AΛ,∆,ω(γ))

almost surely (that is: for µ-almost every ω). Equation 2.4.8 of Lemma 2.4.4 implies
that

inf
ρ∈A∆n (γ)

H(µ∆n |ρ) = 0.
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This implies that

inf
ρ∈A∆n (γ)

(
H(µ∆nrΛ|ρ∆nrΛ) +

∫
E∆nrΛ

H(µωn |ρω)dµ∆nrΛ(ω)

)
= 0,

where ρω is the r.c.p.d. of ρ on (EΛ, EΛ) corresponding to the projection map
E∆n → E∆nrΛ. Remark that ρω ∈ AΛ,∆n,ω(γ) almost surely because ρ ∈ A∆n(γ)
and by consistency of γ. This means that

inf
ρω∈AΛ,∆n,ω(γ)

H(µωn |ρω) = 0,

and therefore µωn ∈ C(AΛ,∆n,ω(γ)), almost surely. But C(AΛ,∆n,ω(γ)) ⊂ C(AΛ,∆,ω(γ))
because ∆ ⊂ ∆n, which proves the claim.

For any A ∈ EΛ, the bounded martingale convergence theorem says that almost
surely

µωn(A)→ µωΛ(A).

The set C(AΛ,∆,ω(γ)) is compact in the strong topology, and therefore almost surely
µωn → µωΛ ∈ C(AΛ,∆,ω(γ)).

Corollary 2.5.8. If γ is a weakly dependent specification and µ ∈ h0(γ) satisfies
µ(Ωγ) = 1, then µ is almost Gibbs.

Proof. By the previous lemma, µωΛ ∈ AΛ,ω(γ) = {γ̂Λ(·, ω)} for µ-a.e. ω, proving that
µ is a DLR state.

Corollary 2.5.9. Let γ denote a weakly dependent specification, and fix a measure
λ ∈ A{0}(γ). We pretend that λ is a probability measure on the state space (E, E).
Then there exists a constant ε > 0 such that, for any minimiser µ ∈ h0(γ) and for
any Λ ∈ S, we have µωΛ ≥ (ελ)Λ for µ-almost every ω. In other words, µ has finite
energy.

In particular, if E is finite and every state e ∈ E has positive probability with
respect to λ, then one may replace λ by the counting measure on E, which possibly
has the effect of forcing us to take ε smaller. By doing so, we obtain the original
finite energy formulation of Burton and Keane [4].

Proof of Corollary 2.5.9. Consider a weakly dependent specification γ, and fix a
probability measure λ ∈ A{0}(γ). The definition of a weakly dependent specification
and Lemma 2.5.1 imply that Diam∞ C(A{0}(γ)) is finite, and therefore there exists
an ε > 0 such that µ ≥ ελ for any µ ∈ C(A{0}(γ)). (In fact, it is easy to see that the
choice ε := exp−Diam∞ C(A{0}(γ)) suffices for this purpose.)

Claim that µ ≥ (ελ)Λ for any µ ∈ AΛ(γ), for fixed Λ ∈ S. Write µ = νγ̂Λ for
some ν ∈ P(Ω,F). Without loss of generality, we suppose that ν = νγΛ, so that
µ = νΛ. We also have ν = ν

∏
x∈Λ γ{x}. By induction,

ν = ν
∏

x∈Λ
γ{x} ≥ (ελ)Λ × νSrΛ.

This proves the claim. The claim also proves that µ ≥ (ελ)Λ for any µ ∈ C(AΛ(γ)),
which implies the corollary due to Lemma 2.5.7.

49



2.5.4 Duality between random fields and specifications
Lemma 2.5.10. Let γ denote a weakly dependent specification and ν a minimiser of
γ. Then for any shift-invariant random field µ, we have

h(µ|γ) = h(µ|ν) := lim
n→∞

|∆n|−1H∆n(µ|ν).

Proof. We observe that |H∆n(µ|ν)−H∆n(µ|νγ∆n)| ≤ Diam∞ C(A∆n(γ)) = o(|∆n|)
as n→∞.

Let us now investigate the relation between S and F. Define the relation ∼ on F
by declaring that µ ∼ ν whenever µ ∈ h0(ν).

Lemma 2.5.11. The relation ∼ is an equivalence relation on F with h0(µ) the
equivalence class of µ ∈ F.

Proof. Fix ν ∈ F. Clearly ν ∼ ν, because h(ν|ν) = 0. It suffices to show that
h0(µ) = h0(ν) whenever µ ∼ ν. Suppose that µ ∼ ν. As ν ∈ F, there exists
a specification γ ∈ S such that ν ∈ h0(γ). The previous lemma implies that
h0(ν) = h0(γ), that is, µ ∈ h0(γ), and therefore also h0(µ) = h0(γ). This proves that
h0(µ) = h0(ν).

This is sufficient for the conclusions that were drawn in Subsection 2.3.3.

2.6 Applications
Most of the classical results on the variational principle follows directly from our new
setting. In this section we will give several examples of this fact. We derive new
results for the Loop O(n) model and for the Ising model in a random percolation
environment, which is also called the Griffiths singularity random field.

2.6.1 Models with an absolutely summable interaction potential
In this subsection we show how to derive naturally from our work the variational
principle for absolutely summable potential as described in [20] or [49]. The model of
interest is described by a reference measure and a shift-invariant absolutely summable
potential. Write λ for the reference measure, which is a probability measure on the
state space (E, E). This measure informs us of the most random distribution of the
state of an isolated vertex in the absence of any interaction. Write Φ = (ΦA)A∈S for
the interaction potential. The potential encodes the interactions that exist between
the states at different sites. Formally, an interaction potential Φ = (ΦA)A∈S is a
family of functions such that ΦA : Ω→ R ∪ {∞} is FA-measurable. The potential
Φ is called shift-invariant if ΦθA(ω) = ΦA(θω) for any A ∈ S, θ ∈ Θ, ω ∈ Ω. The
potential Φ is called absolutely summable if

‖Φ‖ :=
∑

A∈S, 0∈A
‖ΦA‖∞ <∞,

where ‖ · ‖∞ denotes the supremum norm. It is thus assumed that Φ is shift-invariant
and absolutely summable.

The potential induces a Hamiltonian. For Λ ∈ S and ∆ ⊂ Zd, define

HΛ,∆ :=
∑

A∈S, A∩Λ6=∅, A⊂∆

ΦA.
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In particular, the Hamiltonians are the functions of the form HΛ := HΛ,S , where
Λ ∈ S. The reference measure λ and the potential Φ generate a Gibbs specification
γ = (γΛ)Λ∈S defined by

γΛ(A,ω) :=
1

ZωΛ

∫
EΛ

1A(ζωSrΛ)e−HΛ(ζωSrΛ)dλΛ(ζ)

for any Λ ∈ S, ω ∈ Ω, and A ∈ F , where ZωΛ is the normalising constant

ZωΛ :=

∫
EΛ

e−HΛ(ζωSrΛ)dλΛ(ζ). (2.6.1)

The Hamiltonian HΛ is always bounded by |Λ| · ‖Φ‖. Moreover, for absolutely
summable potentials, the strength of the interaction decreases with the range. We aim
to show two things: that the specification γ is weakly dependent, and that Ωγ = Ω.
In that case, Corollary 2.4.9 and Corollary 2.5.8 prove the variational principle, where
all almost Gibbs measures are Gibbs measures. For the analysis it is convenient to
define, for Λ,∆ ∈ S,

εΛ,∆ :=
∑

A∈S, A∩Λ6=∅, A 6⊂∆

‖ΦA‖∞.

Compare this to the definition of HΛ,∆—the construction implies the inequality
‖HΛ−HΛ,∆‖∞ ≤ εΛ,∆. The constants εΛ,∆ contain precisely all the information that
we need for proving weak dependence and that Ωγ = Ω. To see this, we first prove
the following lemma.

Lemma 2.6.2. For any ω ∈ Ω and Λ,∆ ∈ S, we have Diam∞ C(AΛ,∆,ω) ≤ 4εΛ,∆.

Proof. Fix ω′, ω′′ ∈ Ω such that ω∆ = ω′∆ = ω′′∆. Choose ζ ∈ EΛ. Then we know
that HΛ,∆(ζω′SrΛ) = HΛ,∆(ζω′′SrΛ), and the triangular inequality implies that

|HΛ(ζω′SrΛ)−HΛ(ζω′′SrΛ)| ≤
|HΛ(ζω′SrΛ)−HΛ,∆(ζω′SrΛ)|+ |HΛ(ζω′′SrΛ)−HΛ,∆(ζω′′SrΛ)| ≤ 2εΛ,∆.

This inequality and (2.6.1)—the definition of ZωΛ—imply that

| logZω
′

Λ − logZω
′′

Λ | ≤ 2εΛ,∆.

The definition of the specification implies that γ̂Λ(·, ω) = 1
ZωΛ
e−HΛ(·ωSrΛ)λΛ, and

therefore we deduce that H∞(γ̂Λ(·, ω′), γ̂Λ(·, ω′′)) ≤ 4εΛ,∆ from the inequalities in
the previous two displays. Conclude that

Diam∞ C(AΛ,∆,ω) =

Diam∞AΛ,∆,ω = sup
ω′,ω′′∈Ω, ω∆=ω′∆=ω′′∆

H∞(γ̂Λ(·, ω′), γ̂Λ(·, ω′′)) ≤ 4εΛ,∆.

This is the desired inequality.

We now simply employ the bound provided by the lemma, in order to arrive at
the variational principle. To deduce the variational principle with Gibbs measures,
we must prove that the specification γ is weakly dependent, and that Ωγ = Ω. By
the lemma, we know that

1. Diam∞A∆n(γ) ≤ 4ε∆n,∆n ,
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2. Diam∞AΛ,∆n,ω(γ) ≤ 4εΛ,∆n for any ω ∈ Ω.

To prove weak dependence, it is therefore sufficient to show that ε∆n,∆n = o(|∆n|) as
n→∞. Similarly, to prove that Ωγ = Ω, it is sufficient to show that εΛ,∆n → 0 as
n→∞ for any Λ ∈ S, as this would imply that

Diam∞AΛ,ω(γ) ≤ inf
n∈N

Diam∞ C(AΛ,∆n,ω(γ)) = 0.

Start with the latter. It is immediate from the definition of εΛ,∆n that

εΛ,∆n ≤
∑
x∈Λ

ε{x},∆n
=
∑
x∈Λ

ε{0},∆n−x → 0

as n→∞, because |Λ| and ||Φ|| are both finite. This proves that Ωγ = Ω. For weak
dependence, decompose

ε∆n,∆n ≤
∑

x∈∆n

ε{x},∆n
=
∑

x∈∆n

ε{0},∆n−x

=
∑

x∈∆n−blognc
ε{0},∆n−x +

∑
x∈∆nr∆n−blognc

ε{0},∆n−x

≤ |∆n−blognc| · ε{0},∆blognc + |∆n r ∆n−blognc| · ||Φ|| = o(|∆n|)

as n→∞.

2.6.2 The random-cluster model
Let us introduce the random-cluster model. Fix an edge-weight p ∈ (0, 1) and a cluster-
weight q ∈ (0,∞). The idea of the random-cluster model is to perform independent
bond percolation (with parameter p) on (a subset of) the square lattice Zd, and
subsequently weight each configuration by q raised to the number of percolation
clusters in the resulting random graph. To cast the random-cluster model into the
formalism of this chapter, we must first choose a suitable state space (E, E) for the
vertices x ∈ Zd, which allows us to encode for each edge if it is open or not. There
exists a natural way to do this: with each vertex x we associate the d edges of the
form {x, x+ ei} with 1 ≤ i ≤ d. The state space that we choose is

E = {0, 1}{1,...,d},

where for ωx ∈ E the i-th coordinate is a 1 if the edge {x, x+ ei} is open and 0 if it
is closed. For e ∈ E we define |e| := |{1 ≤ i ≤ d : ei = 1}|, the number of open edges
encoded in e. If ω ∈ EΛ for some Λ ∈ S, then write ‖ω‖ :=

∑
x∈Λ |ωx|. If ω ∈ Ω and

Λ ∈ S, then define

C(ω,Λ) :=
the number of open clusters of ω that intersect
Λ or contain a vertex adjacent to Λ.

It is important to observe that

|C(ω,Λ)− C(ζ,Λ)| ≤ 2|∂Λ| (2.6.3)

if ωΛ = ζΛ, where ∂Λ denotes the edge boundary of Λ, that is, set of edges of the
square lattice with exactly one endpoint in Λ. We now introduce the specification
γ = (γΛ)Λ∈S corresponding to the random-cluster model. For any ω ∈ Ω, Λ ∈ S, and
ζ ∈ EΛ, we define the weight function

w(ζ, ω,Λ) := p‖ζ‖(1− p)d|Λ|−‖ζ‖qC(ζωSrΛ,Λ).
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The probability kernel γ̂Λ corresponding to the random-cluster model is now defined
by

γ̂Λ(ζ, ω) :=
1

ZωΛ
w(ζ, ω,Λ),

where ZωΛ is a suitable normalisation constant. The complete, nonrestricted probability
kernel γΛ is given by γΛ(·, ω) = γ̂Λ(·, ω)× δωSrΛ . Let us now prove that the resulting
specification γ = (γΛ)Λ∈S is weakly dependent. From (2.6.3) and the definition of w
it is clear that ∣∣∣∣log

w(ζ, ω,Λ)

w(ζ, ω′,Λ)

∣∣∣∣ ≤ 2|∂Λ|| log q|

for all possible ζ, ω, ω′, and Λ. As a direct consequence∣∣∣∣log
ZωΛ
Zω
′

Λ

∣∣∣∣ ≤ 2|∂Λ|| log q|, and
∣∣∣∣log

γ̂Λ(ζ, ω)

γ̂Λ(ζ, ω′)

∣∣∣∣ ≤ 4|∂Λ|| log q|.

The right inequality implies that

Diam∞A∆n(γ) ≤ 4|∂∆n|| log q| = o(|∆n|)

as n→∞, which proves that the specification γ is weakly dependent.
The goal is to prove the variational principle, which asserts the equivalence in

Equation 2.3.1 for any shift-invariant random field µ. Weak dependence of γ gives us
access to the framework that is developed in this chapter. In particular, we have the
following three results:

1. There exists at least one shift-invariant measure µ such that h(µ|γ) = 0,

2. If µ is a shift-invariant DLR state, then µ ∈ h0(γ),

3. If µ ∈ h0(γ) and µ(Ωγ) = 1, then µ is almost Gibbs.

To arrive at the variational principle, it is now sufficient to prove that µ(Ωγ) = 1
whenever µ ∈ h0(γ).

Define

Ω′ :=

ω ∈ Ω :
if ζ ∈ Ω is any other configuration that equals ω up to
finitely many edges, then ζ has at most one infinite com-
ponent

 .

It follows from the well-known argument of Burton and Keane [4] that µ(Ω′) = 1
whenever µ is a shift-invariant random field with finite energy. Minimisers of the
specific free energy have finite energy due to Corollary 2.5.9. Thus, in order to deduce
the variational principle for the random-cluster model, it suffices to demonstrate that
Ω′ ⊂ Ωγ .

Fix ω ∈ Ω′, and claim that ω ∈ Ωγ . This is well-known for the random-cluster
model, but perhaps not in the language of this chapter; we give a concise proof. Fix
Λ ∈ S. We make the stronger claim that

AΛ,∆,ω(γ) = {γ̂Λ(·, ω)}

for ∆ sufficiently large. In other words, we claim that for some appropriate choice of
∆, the measure γ̂Λ(·, ω) is invariant under changing ω on the complement of ∆. The
point is that the dependence of γ̂Λ(·, ω) on ω is through the way that the percolation
structure encoded in ω connects the vertices in the boundary of Λ with paths through
the complement of Λ. Choose ∆ ∈ S such that
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1. ∆ contains Λ,

2. If x is adjacent to Λ and part of a finite ω-cluster, then ∆ contains that entire
finite ω-cluster and all vertices adjacent to it,

3. If x and y are adjacent to Λ and contained in the infinite ω-cluster, then ∆
contains an open path from x to y through the complement of Λ.

The choice ω ∈ Ω′ guarantees that the open path from x to y through the complement
of Λ exists. The merit of this choice of ∆ is of course that

C(ξ,Λ) = C(ξ′,Λ),

whenever ξ, ξ′ ∈ Ω are chosen such that ξ∆ = ξ′∆ and ξ∆rΛ = ξ′∆rΛ = ω∆rΛ. In
particular, this implies that

w(ζ, ω,Λ) = w(ζ, ω′,Λ)

for any ζ ∈ EΛ and for any ω′ ∈ Ω such that ω′∆ = ω∆. Conclude that γ̂Λ(·, ω′) =
γ̂Λ(·, ω) for such ω′ ∈ Ω, which implies the claim.

2.6.3 The Loop O(n) model
The arguments for the variational principle for the random-cluster model work for
any weakly dependent model in which the long-range interaction is due to weight on
percolation clusters, level sets, paths, or other large geometrical objects which arise
from the local structure (for the random-cluster model this was the cluster-weight q).
The variational principle holds true for all such models. Consider, for example, the
Loop O(n) model. In this model, one draws disjoint loops on the hexagonal lattice;
the probability of a certain configuration depends on the number of loops and on the
number of loop edges in that configuration. It is thus a two-parameter model, much
like the random-cluster model. See the work of Peled and Spinka [46] for a detailed
introduction. The Loop O(n) model may be formalised as follows: it is a model of
random functions from the faces of the hexagonal lattice to E = {0, 1}. The number
of level sets of these functions corresponds to the number of loops in the Loop O(n)
model, and the number of edges on which the function is not constant corresponds
to the number of edges that are contained in a loop. Remark that in this case the
Burton and Keane argument tells us that there is at most one infinite level set on
which the function equals 0, and at most one infinite level set on which the function
equals 1. If both infinite level sets are present, then they are clearly distinguished by
their type.

2.6.4 The Griffiths singularity random field
The Griffiths singularity random field was introduced by Van Enter, Maes, Schonmann,
and Shlosman [15]. They study the model in relation to the phenomenon of so-called
Griffiths singularities. The model depends on two parameters: the percolation
parameter p ∈ (0, 1), and the inverse temperature β ∈ R; both are fixed throughout
the discussion. We take β ≥ 0 without loss of generality, which corresponds to the
ferromagnetic setting. To draw from the Griffiths singularity random field Kp,β , one
first samples independent site percolation with parameter p; then, on each percolation
cluster, one samples an independent Ising model with parameter β. The Griffiths
singularity random field is thus an Ising model in a random environment.
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First, we introduce some notation. A natural choice for the state space is
E = {−1, 0, 1}. The state 0 indicates a closed vertex, while the state ±1 indicates an
open vertex of that spin. Write E for the powerset of E, a σ-algebra, and E0 for the
σ-algebra on E generated by the function 10. Let F0 denote the product σ-algebra
ES0 . If ω ∈ Ω or ω ∈ EΛ for some Λ ⊂ S, then write Π(ω) ⊂ Zd for the set of open
vertices. We consider each configuration ω ∈ Ω to be a function from Zd to {−1, 0, 1},
and in that light we treat |ω|, −ω, and 1Λ as configurations in Ω for any ω ∈ Ω or
Λ ⊂ Zd. There is a natural ordering ≤ on Ω; write ω1 ≤ ω2 whenever ω1

x ≤ ω2
x for

any x ∈ Zd. If µ1, µ2 ∈ P(Ω,F), then write µ1 � µ2 if µ1 is stochastically dominated
by µ2, that is, if there exists a coupling between µ1 and µ2 such that ω1 ≤ ω2 almost
surely. Finally, the square lattice Zd has naturally associated to it an edge set; write
xy (juxtaposition) for an unordered pair of neighbouring vertices x, y ∈ Zd in this
graph. Write ∂Λ for the edge boundary of any set Λ ∈ S, as in the analysis of the
random-cluster model.

The Ising model on a finite graph

For finite sets Λ ∈ S, the Ising model in Λ is a probability measure on EΛ defined by

αΛ(ω) ∝
∏
xy⊂Λ

e−βωxωy

if ωx = ±1 for every x ∈ Λ, and αΛ(ω) = 0 otherwise. The following key identity is a
corollary of the definition:

αΛ(ω) =
1

Z
· fΛ,∆(ω) · αΛ∩∆(ωΛ∩∆) · αΛr∆(ωΛr∆) (2.6.4)

for any Λ,∆ ∈ S and ω ∈ EΛ, where

fΛ,∆(ω) :=
∏

xy⊂Λ, xy∈∂∆
e−βωxωy and Z =

∫
EΛ

fΛ,∆d(αΛ∩∆ × αΛr∆).

In particular, if Λ ∈ S and ∆ a connected component of Λ, then (2.6.4) implies that
αΛ = α∆ × αΛr∆.

If Λ ∈ S and ω ∈ E∆ for some Λ ⊂ ∆ ⊂ S, then we sometimes write αΛ(ω) for
αΛ(ωΛ).

The Ising model on an infinite graph

The Ising model on infinite subgraphs of Zd is introduced in terms of the associated
specification, which is denoted by κ = (κΛ)Λ∈S . Consider arbitrary Λ ∈ S and ω ∈ Ω.
Informally, the measure κΛ(·, ω) ∈ P(Ω,F) is the Ising model in the graph Π(ω)∩Λ—
the edges inherited from the square lattice—subject to boundary conditions provided
by the configuration ω. Formally, κΛ(·, ω) is the unique random field such that

κΛ(ζ, ω) ∝
∏

xy ⊂ Λ or xy ∈ ∂Λ

e−βζxζy

for any ζ ∈ Ω such that ζSrΛ = ωSrΛ and Π(ζ) = Π(ω), and κΛ(ζ, ω) = 0 for all
other ζ. Of course, the only edges xy that contribute to the product in the display
are the ones that are also contained in Π(ζ) = Π(ω). As per usual, we abbreviate
κ̂Λ(·, ω) := πΛ(κΛ(·, ω)), and we observe that αΛ = κ̂Λ(·, 1Λ) in this notation.
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The interest is however in the Ising model in the entire graph induced by Π(ω).
By monotonicity, the sequence of random fields (κ∆n(·, |ω|))n∈N is decreasing with
respect to �, and therefore tends to a limit in the L-topology as n → ∞. Write
κ+(·, ω) for this limit, and similarly write κ−(·, ω) for the limit of the increasing
sequence (κ∆n(·,−|ω|))n∈N. Remark that both κ−(·, ω) and κ+(·, ω) depend on the
percolation structure Π(ω) of ω only, and not on the spins of the open sites. In other
words, κ+ and κ− are probability kernels from (Ω,F0) to (Ω,F). A monotonicity
argument implies that κ−(·, ω) � κ+(·, ω). If the two measures are distinct, then it
is said that the Ising model magnetises on Π(ω). Write M ⊂ Ω for the collection
of configurations ω such that the Ising model magnetises on Π(ω). The set M is
measurable with respect to F0. It is also measurable with respect to F0

SrΛ, for any
Λ ∈ S. In other words,M is tail measurable. If ζ ∈ Ω−M , then another monotonicity
argument implies that κ+(·, ζ) is the unique random field such that almost surely
Π(ω) = Π(ζ) and which is invariant under each probability kernel κΛ. We finally
state an important proposition, which also follows from monotonicity.

Proposition 2.6.5. The map ω 7→ κ+(·, ω) is continuous—both sides endowed with
the L-topology—at some ζ ∈ Ω if and only if ζ 6∈M .

The random percolation environment

Write Pp for the percolation measure with parameter p, that is, the measure in
which each vertex takes value 1 with probability p, and value 0 with probability
1 − p, independently of all other vertices. Note that we have a zero-one law for
the tail-measurable event M in Pp. We therefore distinguish three phases at most:
one phase of subcritical percolation, one phase of supercritical percolation but with
Pp(M) = 0, and one phase of supercritical percolation with Pp(M) = 1. Clearly
Pp(M) = 0 in the subcritical percolation regime as there are no infinite clusters
almost surely and therefore the infinite Ising model decomposes into the product of
infinitely many finite cluster Ising models. The interesting regime is therefore the
supercritical percolation regime. Our goal is to prove the variational principle for the
nonmagnetic phase—both in the subcritical and supercritical percolation regime.

Below critical percolation

Let us for now assume that we are in the subcritical percolation regime p < pc, so
that we avoid the presence of an infinite percolation cluster altogether. The Griffiths
singularity random field Kp,β is simply defined by the equation Kp,β := Ppκ

+. To
sample from Kp,β, one first samples the percolation structure ζ from Pp, then one
draws the final sample ω from the Ising model κ+(·, ζ), which decomposes into a
product of Ising models on the finite clusters of Π(ζ) almost surely.

Fix Λ ∈ S. Observe that Kp,β is invariant under the kernel which first resamples
the percolation structure on Λ, then resamples the Ising model on each percolation
cluster that intersects Λ. This motivates the definition of a natural specification
associated toKp,β . First, consider those ω ∈ Ω for which there is no infinite percolation
cluster. For any Λ ∈ S, write Γ(ω,Λ) ⊂ Zd for the union of ω-open clusters that
contain a vertex that is in or adjacent to Λ. Also write ‖ωΛ‖ for the number of
ω-open vertices in Λ. For such ω and Λ, we define the probability measure γ̂Λ(·, ω) by

γ̂Λ(ζ, ω) :=
1

ZωΛ
p‖ζ‖(1− p)|Λ|−‖ζ‖αΓ(ζωSrΛ,Λ)(ζωSrΛ), (2.6.6)
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where ZωΛ is a suitable normalisation constant, and ζ ranges over EΛ. As per usual,
the full kernel γΛ is recovered through the equation γΛ(·, ω) = γ̂Λ(·, ω) × δωSrΛ . It
follows from this definition and the intuitive picture that Kp,β = Kp,βγΛ for every
Λ ∈ S, even though we have not yet defined γΛ(·, ω) for those ω with an infinite
percolation cluster.

Let us now rewrite the previous definition of γ̂Λ(·, ω) into an expression that is less
intuitive but more useful for the analysis. First, write ξ := ζωSrΛ and Γ := Γ(ξ,Λ).
Use (2.6.4) to obtain

αΓ(ξ) =
fΓ,Λ(ξ) · αΓ∩Λ(ζ) · αΓrΛ(ω)

(αΓ∩Λ × αΓrΛ)(fΓ,Λ)

Note that Γ ∩ Λ = Π(ζ). The set Γ(ζωSrΛ,Λ) − Λ depends on ωSrΛ only, and
therefore αΓrΛ(ω) is independent of ζ. We may therefore combine αΓrΛ(ω) with the
normalisation constant in (2.6.6) to obtain

γ̂Λ(ζ, ω) =
1

ZωΛ
p‖ζ‖(1− p)|Λ|−‖ζ‖αΠ(ζ)(ζ)

fΓ,Λ(ξ)

(αΠ(ζ) × αΓrΛ)(fΓ,Λ)
;

now with a different normalisation constant. If we write fΛ for the function

fΛ(ω) :=
∏

xy∈∂Λ

e−βωxωy ,

then the previous equation simplifies to

γ̂Λ(ζ, ω) =
1

ZωΛ
p‖ζ‖(1− p)|Λ|−‖ζ‖αΠ(ζ)(ζ)

fΛ(ξ)

(κ̂Λ(·, 1Π(ζ))× πSrΛ(κ+(·, 1Π(ω)−Λ)))(fΛ)
.

(2.6.7)
This probability kernel is well-defined for any ω, even if ω has infinite clusters or if
the Ising model magnetises on Π(ω). We shall take (2.6.7) as a definition for each
kernel γΛ. The family γ = (γΛ)Λ∈S so produced is a specification. The long-range
interaction derives exclusively from the appearance of the measure κ+(·, 1Π(ω)−Λ)
in the denominator in the fraction on the right in (2.6.7). Recall that M is tail
measurable: the Ising model magnetises on Π(ω) if and only if the Ising model
magnetises on Π(ω)− Λ. This leads to the following crucial observation.

Proposition 2.6.8. Consider ζ ∈ Ω. If ζ 6∈ M , then the map ω 7→ γΛ(·, ω) is
continuous—both sides endowed with the L-topology—at ζ for any Λ ∈ S. In other
words, Ωγ contains Ω−M .

We claim that the specification γ is weakly dependent. The reasoning is similar
to the discussion of the random-cluster model. The dependence on ω in (2.6.7)
is only through its appearance in the fraction on the right, and its effect on the
normalisation constant ZωΛ . But the definition of fΛ implies that | log fΛ| ≤ |∂Λ||β|.
The logarithm of the fraction in (2.6.7) is therefore bounded by 2|∂Λ||β|. Much like
for the random-cluster model, this implies that∣∣∣∣log

ZωΛ
Zω
′

Λ

∣∣∣∣ ≤ 4|∂Λ||β| and
∣∣∣∣log

γ̂Λ(ζ, ω)

γ̂Λ(ζ, ω′)

∣∣∣∣ ≤ 8|∂Λ||β|,

and we conclude with the asymptotic bound

Diam∞A∆n(γ) ≤ 8|∂∆n||β| = o(|∆n|)

as n→∞; the specification γ is weakly dependent. Note that the argument for weak
dependence of γ works for any choice of parameters p ∈ (0, 1) and β ≥ 0, regardless
of the phase that we work in.
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Below magnetisation

For the remainder of the theory, it is no longer necessary to require p < pc. Instead, we
fix the percolation parameter p and inverse temperature β subject only to Pp(M) = 0.
Of course, the Griffiths singularity random field Kp,β is defined by the equation
Kp,β := Ppκ

+ = Ppκ
−. This measure is a DLR state of the specification γ as defined

in (2.6.7). Moreover, we observe that Kp,β(M) = Pp(M) = 0, and therefore Kp,β is
supported on Ωγ . In other words, Kp,β is almost Gibbs with respect to γ. Our final
goal is to prove the following theorem.

Theorem 2.6.9. If the parameters p and β are such that Pp(M) = 0, then h0(γ) =
{Kp,β}.

This statement is stronger than the variational principle, it also implies that Kp,β

is the unique DLR state of γ, and that Kp,β is the unique minimiser of γ.

Proof of Theorem 2.6.9. Fix µ ∈ h0(γ). Then µ ∈ h0(Kp,β). Remark that Kp,β|F0 =
Pp|F0 ; sampling the Ising model on the percolation clusters alters the spins on those
clusters, but not the percolation structure itself. Observe that

h(µ|Kp,β) = lim
n→∞

|∆n|−1HE∆n (µ∆n |π∆n(Kp,β))

≥ lim
n→∞

|∆n|−1HE∆n
0

(µ∆n |π∆n(Kp,β)) = lim
n→∞

|∆n|−1HE∆n
0

(µ∆n |π∆n(Pp)).

What we read on the last line in this display is exactly the SFE of µ|F0 with respect
to Pp|F0 . But Pp|F0 is a Gibbs measure with respect to an independent specification,
which has a unique minimiser. We chose µ such that h(µ|Kp,β) = 0, which now
implies that µ|F0 = Pp|F0 . We observe in particular that µ(M) = 0, and consequently
µ(Ωγ) = 1. Therefore µ is almost Gibbs with respect to γ. Finally, we observe that
γΛ = γΛκΛ. This implies that µ is also a DLR state of the specification κ. But the
Ising model is nonmagnetising on Π(ω) for µ-almost every ω, and therefore µ is also
invariant under the probability kernel κ+. This kernel is F0-measurable; conclude
that µ = (µ|F0)κ+ = Ppκ

+ = Kp,β .
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Chapter 3
Macroscopic behaviour of
Lipschitz random surfaces

The motivation for this chapter is to derive strict convexity of the surface tension for
Lipschitz random surfaces, that is, for models of random Lipschitz functions from
Zd to Z or R. An essential innovation is that random surface models with long- and
infinite-range interactions are included in the analysis. More specifically, we cover
at least: uniformly random graph homomorphisms from Zd to a k-regular tree for
any k ≥ 2 and Lipschitz potentials which satisfy the FKG lattice condition. The
latter includes perturbations of dimer- and six-vertex models and of Lipschitz simply
attractive potentials introduced by Sheffield. The main result is that we prove strict
convexity of the surface tension—which implies uniqueness for the limiting macroscopic
profile—if the model of interest is monotone in the boundary conditions. This solves a
conjecture of Menz and Tassy, and answers a question posed by Sheffield. Auxiliary to
this, we prove several results which may be of independent interest, and which do not
rely on the model being monotone. This includes existence and topological properties
of the specific free energy, as well as a characterisation of its minimisers. We also prove
a general large deviations principle which describes both the macroscopic profile and
the local statistics of the height functions. This work is inspired by, but independent
of, Random Surfaces by Sheffield.

3.1 Introduction

3.1.1 Preface
We study the macroscopic behaviour of models of Lipschitz random surfaces, that is,
random Lipschitz functions from Zd to Z or R. Examples of such models include height
functions of dimer models and six-vertex models and uniformly random K-Lipschitz
functions. One studies in particular the local Gibbs measures, subject to boundary
conditions. It is generally expected that the macroscopic limit of a random surface
under the influence of boundary conditions is governed by a variational principle. This
variational principle asserts that, under suitable boundary conditions on a bounded
domain D ⊂ Rd, the asymptotic macroscopic profile f∗ must concentrate on any
neighbourhood of the set of minimisers of the integral∫

D
σ(∇f(x))dx (3.1.1)

over all those functions f that match these boundary conditions.
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The convex function σ, which is called the surface tension, is specific to the model
and encodes the free energy density of gradient Gibbs measures which are constrained
to a certain slope. Sheffield proves in his seminal work Random Surfaces [54] that this
variational principle can be generalised into a large deviation principle that governs
not only the macroscopic profile, but also the local statistics of a random surface
over macroscopic regions. These results apply to a significant number of models.
The fundamental integral in (3.1.1) connects the large deviations principle and the
variational principle: it appears as the rate function in the large deviations principle,
which implies the asserted concentration. When σ is strictly convex, the rate function
of the large deviations principle has a unique minimiser f∗ and the random functions
concentrate around this unique minimiser (see [9] for a proof that strict convexity
of σ implies uniqueness of the minimiser of the integral). This also implies that the
model is stable under microscopic changes in the boundary conditions. On the other
hand, when σ fails to be strictly convex, simulations have suggested that microscopic
changes to boundary conditions might have macroscopic effects, and (more generally)
that random surfaces might be macroscopically disordered. To illustrate this point,
we refer to Figure 3.1 for two samples from the five-vertex model, one with parameters
which make σ strictly convex, and one with parameters for which σ is not strictly
convex. The difference in the macroscopic appearance of these two figures is striking.
This dichotomy underlines the pivotal role played by the surface tension in the study
of the asymptotic behaviour of random surfaces.

In the last thirty years, there have been various models in statistical physics for
which strict convexity of the surface tension has been derived. The two most famous
are probably the dimer model [5] for Z-valued random surfaces and the Ginzburg-
Landau ∇φ-interface under suitable conditions [19, 10] for R-valued random surfaces.
In either case, the strategy employed to demonstrate strict convexity of the surface
tension relies heavily on particular properties of the model under consideration. For
dimer models, one is able to calculate σ due to exact integrability of the model [5]; for
the Ginzburg-Landau ∇φ-interface, the strategy relies on the fact that the potentials
considered are almost Gaussian [19]. A decisive breakthrough was made in [54] in
the pursuit of a more general approach. In this work, Sheffield proves that statistical
physics models associated with simply attractive potentials—that is, convex potentials
for which the interactions are exclusively between pairs of points—must have a strictly
convex surface tension. Beyond the surprising generality of the result, this work
also distinguishes itself by the method that was used to prove strict convexity of
the surface tension. Rather than using direct computational arguments, the author
reasons by contradiction: if there is a line segment on which the surface tension is
affine, then the minimising measures corresponding to either endpoint are used to
construct a new measure which minimises the specific free energy, but is not a Gibbs
measure. This is then shown to be impossible.

Despite this significant progress, the techniques used in [54] rely heavily on the
interactions being between pairs of points only—they cannot capture what happens
for models with interactions involving larger clusters of points. The purpose of this
chapter is to dramatically increase the class of models for which strict convexity of
the surface tension can be derived. We do so by providing a new approach which does
not rely on a particular formalism of the model in terms of a potential, but instead
on stochastic monotonicity. Notably, the new class includes all Lipschitz models
for which the interaction potential satisfies the Fortuin-Kasteleyn-Ginibre (FKG)
lattice condition. Such potentials are also called submodular, and form a natural
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Monotone parameters Non-monotone parameters

Figure 3.1: Limiting behaviour of the five-vertex model for different parameters

generalisation of the class of simply attractive potentials. Moreover, the new class
also covers interaction potentials which assign a weight to each level set of the height
function, in the spirit of the random-cluster model. Such models have infinite-range
interactions, and we use them to derive strict convexity of the surface tension for the
tree-valued graph homomorphisms studied in [44].

There are several ideas which suggest that stochastic monotonicity is a suitable
starting point for studying the macroscopic behaviour of random surfaces. First, for
general percolation models, such as independent percolation and Fortuin-Kasteleyn
percolation, the FKG inequality is essential to the understanding of the macroscopic
behaviour of the model: most, if not all, modern techniques in percolation theory
rely on this crucial observation. It appears that stochastic monotonicity is the most
general equivalent of the FKG inequality in the context of random height functions.
Second, when the height functions of interest are also Lipschitz, the Azuma-Hoeffding
inequality implies immediately that the random surface concentrates in some precise
sense; the picture on the right in Figure 3.1 is therefore instantaneously ruled out.
Third, it turns out that for this five-vertex model, stochastic monotonicity (which
depends on the choice of parameters), is in fact equivalent to strict convexity of σ.

Finally, stochastic monotonicity does not depend on any formalism of potentials.
This is a significant difference with the class of simply attractive models in [54],
which depends on a particular representation of the model in terms of an underlying
interaction potential. Stochastic monotonicity is thus practical: it suffices to check
the Holley criterion. For discrete finite-range models, this is particularly efficient, as
it amounts to evaluating a finite number of cases.

3.1.2 Description of the main results

Let us now broadly describe the main results of this chapter. Precise statements
of the corresponding theorems are to be found in Section 3.4. Write Ω for the set
of height functions, that is, functions φ from Zd to E, where the choice of d and
E ∈ {Z,R} depends on the model of interest. Write Λ ⊂⊂ Zd if the former is a finite
subset of the latter; the model of interest is formalised in terms of a specification
γ = (γΛ)Λ⊂⊂Zd which allows one to forget about the values of φ on Λ and resample
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those values according to the model. The measure γΛ(·, φ) is also called the local
Gibbs measure in Λ with boundary conditions φ. This model must be invariant by
some full-rank sublattice L of Zd if any convergent macroscopic behaviour is to be
expected. We impose two key restrictions on γ for the main results to apply: that
γΛ(·, φ) is supported on height functions which are suitably Lipschitz whenever φ
is Lipschitz, and that γΛ(·, φ) � γΛ(·, ψ) whenever φ ≤ ψ. Models satisfying the
former condition are called Lipschitz, if they satisfy the latter then they are called
stochastically monotone. Finally, for the thermodynamical formalism, we require that
the specification γ is generated by some interaction potential Φ which encodes the
interactions of the values of φ at different vertices. We shall see that the heart of
the proof does not rely on the formalism of potentials as it is expressed directly in
terms of the specification. As a consequence, we are able to incorporate potentials Φ
belonging to a very large class which is described in detail in Section 3.3. Informally,
we allow any potential Φ which decomposes as the sum of two potentials Ψ and
Ξ, where Ψ is a potential of finite range which enforces the Lipschitz property (by
assigning infinite potential to functions which are not Lipschitz), and where Ξ is
potentially an infinite-range potential whose intensity decays fast enough for the
specific free energy to be well-defined.

While the finite-range part Ψ of the potential encompasses all common finite-range
models in statistical physics, the infinite-range part Ξ is tailored to fit long-range
interaction potentials such as those associated with the random-cluster model or the
Loop O(n) model. We demonstrate in Subsection 3.13.3 that this formalism can even
be used to prove a conjecture on the limiting behaviour of uniformly random graph
homomorphisms from Zd to a k-regular tree for k ≥ 2.

Let us now introduce a few notions before describing the main results. Write
PL(Ω,F∇) for the collection of L-invariant gradient measures on Ω. Any measure
µ ∈ PL(Ω,F∇) has an associated slope S(µ) which is the unique linear functional
u ∈ (Rd)∗ such that

u(x) = µ(φ(x)− φ(0))

for all x ∈ L. The specific free energy of µ is defined by the limit

H(µ|Φ) := lim
n→∞

n−dHΠn(µ|Φ),

where Πn ⊂⊂ Zd denotes a box of sides n, and where HΛ(µ|Φ) denotes the free
energy of µ over Λ with respect to the interior Hamiltonian generated by Φ; this
quantity is introduced formally in Section 3.2. The surface tension is the function
σ : (Rd)∗ → R ∪ {∞} defined by

σ(u) := inf
µ ∈ PL(Ω,F∇) with S(µ) = u

H(µ|Φ).

This function is automatically convex as S(·) and H(·|Φ) are affine over PL(Ω,F∇)—
as will be shown—and we write UΦ for the topological interior of the set {σ <∞} ⊂
(Rd)∗. Finally, call a shift-invariant measure µ ∈ PL(Ω,F∇) a minimiser if µ satisfies
the equation

H(µ|Φ) = σ(S(µ)) <∞.

Let us start with the motivating result of this chapter.

Theorem (strict convexity of the surface tension). Let Φ denote a potential which
decomposes as described above, and such that the induced specification γΦ is monotone.
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1. If E = R, then σ is strictly convex on UΦ.

2. If E = Z, then σ is strictly convex on UΦ if for any affine map h : (Rd)∗ → R
with h ≤ σ, the set {h = σ} ∩ ∂UΦ is convex. In particular, σ is strictly convex
on UΦ if E = Z and at least one of the following conditions is satisfied:

(a) σ is affine on ∂UΦ, but not on ŪΦ,

(b) σ is not affine on [u1, u2] for any distinct u1, u2 ∈ ∂UΦ such that [u1, u2] 6⊂
∂UΦ.

See Theorem 3.4.12 for the formal statement of this theorem. The extra condition
for E = Z is necessary to control the behaviour of ergodic measures whose slope is
extremal. It is shown in the last part of this chapter that this condition holds true
for all classical models. What happens in general is that measures whose slope lies
in ∂UΦ have zero combinatorial entropy, which makes it straightforward to derive
the inequalities required for satisfying the extra condition. However, it is possible to
design exotic models for which it is not known if the condition holds true or not, and
consequently we cannot rule out the existence of an affine part of the surface tension
for such exotic models.

Our second main result concerns a characterisation of minimisers, for potentials
which decompose as described above. This generalises the results of Chapter 2 to the
gradient setting. It is valid even if γΦ fails to be monotone, and if σ fails to be strictly
convex. However, if σ is strictly convex, then there exists an ergodic minimiser of
slope u for any u ∈ UΦ.

Theorem (minimisers of the specific free energy). Consider a potential Φ which
decomposes as described, as well as a minimiser µ ∈ PL(Ω,F∇). Then µ has finite
energy in the sense of Burton and Keane, which means that any local configuration
that is Lipschitz, has a positive density (if E = R) or probability (if E = Z) of
occurring. Moreover, if the specification γΦ is quasilocal, then µ is a Gibbs measure,
and if γΦ is not quasilocal but if µ is supported on its points of quasilocality, then
µ is an almost Gibbs measure—which implies in particular that µ = µγΦ

Λ for any
Λ ⊂⊂ Zd. Finally, if µ is not supported on the points of quasilocality of γΦ, then
we obtain results on the regular conditional probability distributions of µ which are
similar in spirit to those obtained in Chapter 2.

See Theorem 3.4.4 for the formal statement of this theorem.
The third main result of this chapter is a large deviations principle. This large

deviations principle concerns both the macroscopic profile of a height function, as well
as the local statistics of the height function within a region of macroscopic size. Its
formal description requires a significant amount of technical constructions, for which
we refer to Sections 3.4 and 3.11. One can also consider the large deviations principle
on macroscopic profiles only, and the rate function so appearing is given by (3.1.1)
up to an additive constant so that its minimum equals zero. This immediately
implies the classical variational principle of [5]. The formal statements are included
in Theorem 3.4.10, Corollary 3.4.11, and Theorem 3.11.5.

Theorem (variational principle). Consider a potential Φ which decomposes as above.
Let (Dn, bn)n∈N denote a sequence of pairs of discrete regions Dn ⊂⊂ Zd and boundary
conditions bn ∈ Ω which, after rescaling, suitably approximates some continuous region
D ⊂ Rd endowed with some boundary function b : ∂D → R. Then the random function
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fn obtained by sampling a configuration from γΦ
Dn

(·, bn) and rescaling, is contained
with high probability as n→∞ in any neighbourhood of the set of minimisers f∗ of
the integral ∫

D
σ(∇f(x))dx

over all functions f : D̄ → R which equal b on ∂D. If σ is strictly convex, then this
minimiser f∗ is unique, in which case fn → f∗ in probability as n→∞.

In the final part of this chapter, we provide several applications of our results.
Sheffield conjectured that similar results to those obtained in [54] apply to finite-

range submodular potentials, that is, finite-range potentials which satisfy the FKG
lattice condition. We prove that our framework applies to submodular Lipschitz
potentials, and we prove that the extra condition for E = Z is automatically satisfied
if the model of interest is L-invariant for L equal to the full lattice Zd. In fact, we
do not even require that the submodular potential of interest has finite range. See
Theorem 3.4.14 for the corresponding formal statements.

We furthermore consider the model of uniformly random graph homomorphisms
from Zd to a k-regular tree. Remark that k-regular trees are also Cayley graphs of
finitely generated free groups. We confirm the conjecture in [44], which asserts that
the surface tension associated with this model is strictly convex: see Theorem 3.4.15.
This is remarkable because our theory is phrased in terms of R- or Z-valued functions
only.

3.1.3 Ideas and strategy of the proof
The proof of the main results splits into two parts. The first part develops a range of
thermodynamical machinery for the class of potentials under consideration. The line
of thought motivating these results and proofs was already present in the literature,
most notably in the work of Georgii [20] and Sheffield [54], as well as in Chapter 2.
However, it requires significant effort to adapt these existing tools to the generality of
our setting. The second part provides a proof of strict convexity of the surface tension,
if the potential of interest furthermore induces a specification that is stochastically
monotone. This is where we break new ground. Sheffield [54] proves that the surface
tension is strictly convex by employing the following general strategy:

1. Suppose that σ is affine on a line segment [u1, u2] for u1, u2 ∈ UΦ distinct,

2. Construct a shift-invariant gradient measure in PL(Ω,F∇) of slope u = (u1 +
u2)/2 with minimal specific free energy and which does not have finite energy,

3. Conclude that this contradicts the characterisation of the minimisers of the
specific free energy, as mentioned earlier in this introduction.

The same strategy is employed here, but the construction of the gradient measure,
as well as the heuristic that this construction is based on, are entirely original. The
remainder of this subsection gives an overview of this construction.

First, the surface tension σ(u) at some slope u can be expressed in terms of the
asymptotic behaviour of the partition function of γΠn(·, φu) where φu approximates
u in some precise sense: this is a consequence of the large deviations principle. We
then consider the product measure µ := γΠn(·, φu) × γΠn(·, φu); write (φ1, φ2) for
the random pair of height functions in µ, and write f for the difference φ1 − φ2.
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One can use the fact that σ is affine on the line segment [u1, u2] to derive that the
function f deviates macroscopically—that is, at scale n—from 0 with log probability
of order o(nd) as n → ∞. We then use monotonicity of the specification γ to
compare the probability of a macroscopic deviation of f to the probability that
the set {f ∈ [a, b]} ⊂ Πn ⊂⊂ Zd has many large connected components for fixed
0 < a < b <∞. This requires the development of an essential and original geometrical
construction. The connected components of {f ∈ [a, b]} of interest are called moats.
Finally, we randomly shift the functions φ1 and φ2 by a vector in Πn ∩ L and take
limits to produce a shift-invariant measure on the product space, such that each
marginal has slope u. The two lower bounds on probabilities imply an upper bound on
the specific free energy of this product measure. We show that the moats—the large
connected components of {f ∈ [a, b]}—grow to be distinct infinite components in this
limiting procedure. This contradicts that for a shift-invariant measure with finite
energy, the random set {f ∈ [a, b]} cannot have more than one infinite component
due to the argument of Burton and Keane: the desired contradiction.

Let us finally elaborate briefly on the geometrical construction involving moats.
The goal is to find a lower bound on the probability that {f ∈ [a, b]} has many large
level set, in terms of the probability that f deviates macroscopically from 0. Write
cn := (bn/2c, . . . , bn/2c) ∈ Πn for the centre vertex of Πn, and suppose, by means of
illustration, that f(cn) > εn for some ε > 0. If φ1 and φ2 are K-Lipschitz for some
K ∈ (0,∞), then f is 2K-Lipschitz. Choose a = 4K and b = 8K. Since f(cn) is
large and since f equals 0 on the complement of Πn, we observe that {f ∈ [a, b]}
must contain a connected component which is contained in Πn and surrounds the
vertex cn in some precise sense. This connected component is called a moat. Now fix
an arbitrary connected set M ⊂ Πn, and condition on the event that M is a moat,
and that f is larger than b directly inside M . Equipped with monotonicity, it is
straightforward to demonstrate that it is more likely (in this conditioned measure)
that f(cn) ≤ −εn+ 10K, than that f(cn) ≥ εn. But if f(cn) ≤ −εn+ 10K and if
f is larger than b directly on the inside of M , then {f ∈ [a, b]} must have another
connected component which surrounds cn, and which is in turn surrounded by the
original moat M . One can continue this procedure to generate a sequence of moats
of length bεn/10Kc, such that each moat surrounds the moat that succeeds it. It is
important that the union of all moats occupy a uniformly positive proportion of Πn as
n→∞, so that they do not disappear in the limiting procedure after rerandomising
the position of the origin; this is indeed the case because of the lower bound on the
number of moats.

3.1.4 Open questions
The first natural question which is left open in this work is to decide if it is possible
to drop the requirement that random functions are Lipschitz. We believe that it is
indeed the case, a significant clue being that this requirement does not appear in [54].
Finding a way around this restriction would open the main result to a whole new
class of interactions. However, the geometrical construction involving the moats relies
heavily on the Lipschitz property.

Secondly, it would be interesting to study how the requirement of stochastic
monotonicity can be relaxed. Results on strict convexity of the surface tension have
been obtained for some non-monotone models for a class of non-convex potentials [7,
6, 1], and for small non-monotone perturbations of dimer models [21, 22]. In the
simulation on the right in Figure 3.1, macroscopic disorder is explained by a heuristic.
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For this simulation, the parameters of the model are chosen such that straight lines
are much preferred over corners. This means that the random surface is able to
build momentum: deviations from the mean reinforce each other. This is the exact
opposite of stochastic monotonicity. However, there are more subtle (and potentially
more local) ways in which stochastic monotonicity might fail. A simple example
would be to consider random 1-Lipschitz functions from Zd to Z, where the potential
discourages neighbouring vertices from taking the exact same value. It is easy to show
that this model is not monotone, but there is no heuristic of momentum building
which would imply macroscopic disorder. Perhaps it would be possible to prove that
this model is stochastically monotone in some relaxed sense, in which case the results
on moats could be adapted to fit this model.

3.1.5 Structure of the chapter

Section 3.2 provides an overview of the objects which play a role in the study of
random surfaces. These definitions are standard, and derive mainly from the work of
Georgii [20] and Sheffield [54]. Section 3.3 presents the class of models which fall under
the scope of this chapter. Formal statements of the main results are contained in
Section 3.4. The heart of the chapter is contained in Section 3.5, which is independent
of the rest of the chapter. It only refers to some of the most basic constructions in
Section 3.2. Sections 3.6–3.11 develop the thermodynamical machinery necessary for
understanding random surfaces, and culminate in the large deviations principle in
Section 3.11. Section 3.6 contains a number of observations concerning the geometry
induced by the Lipschitz condition. Section 3.7 studies properties of the specific
free energy. Section 3.8 contains a characterisation of the minimisers of the specific
free energy, and essentially adapts the arguments of Chapter 2 to the setting of
random surfaces. In Section 3.9 we state and adapt some standard results on ergodic
decompositions from [20]. Sections 3.10 and 3.11 extend Chapters 6 and 7 of [54]
to the infinite-range Lipschitz setting. Once the large deviations principle has been
established, we combine it with the theory of moats from Section 3.5 to prove that the
surface tension is strictly convex. These are the contents of Section 3.12. Section 3.13
finally contains a number of significant applications of our theory.

3.2 The thermodynamical formalism

The interest is in distributions of the random function φ which assigns a value
φ(x) from E to each vertex x ∈ Zd, where d ≥ 2 and—depending on the model of
interest—E denotes either Z or R. Such distributions are studied in relation to an
underlying model, which encodes the interactions that exist between the function
values of φ at different vertices in Zd. At the very least, the underlying model must
give rise to a functional, which assigns a real number—the specific free energy—to
any shift-invariant distribution of φ. In the non-gradient setting there are at least
three ways to characterise the model of interest:

1. Through a reference measure on E and an interaction potential,

2. Through a reference distribution of φ,

3. Directly through the specification.
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Each formulation has slightly different properties, but they all generate a suitable
entropy functional whenever the correct conditions are imposed. See Chapter 2 for
an overview. In the gradient setting of this chapter we must be more careful, and it
seems that only the first formulation generates a suitable entropy functional. The goal
of this section is to efficiently describe the standard objects for the formal framework
of gradient models on Zd.

Subsection 3.2.1 introduces the necessary objects and symmetries for the shift-
invariant gradient setting. The same subsection also introduces the key restrictions
on the model: that the specification is monotone, and that it produces Lipschitz
functions. Subsection 3.2.2 describes the formalism of potentials. Subsection 3.2.3
introduces the specific free energy and the surface tension. The specific free energy is
well-defined for all potentials Φ in the class SL+WL which is introduced in Section 3.3;
we prove existence of the specific free energy in Section 3.7. All definitions in the
current section are standard.

3.2.1 The gradient formalism

Height functions

We are interested in distributions of the random function φ, which assigns values
from the measure space (E, E , λ) to the vertices of the square lattice Zd. Here E
refers to either Z or R, depending on the context, E is the Borel σ-algebra, and λ
denotes the counting measure (if E = Z) or the Lebesgue measure (if E = R). The
choice of E is considered fixed throughout the entire work. The set of all functions φ
from Zd to E is denoted by Ω. Functions in Ω are called samples or height functions.
For Λ ⊂ Zd and φ ∈ Ω, write φΛ ∈ EΛ for the restriction φ|Λ. If furthermore ∆ ⊂ Zd
and ψ ∈ Ω with Λ and ∆ disjoint, then write φΛψ∆ ∈ EΛ∪∆ for the unique function
that restricts to φ on Λ and to ψ on ∆.

Subsets of Zd

Write Λ ⊂⊂ Zd if Λ is a finite subset of Zd. Throughout this chapter, we shall reserve
the notation (Πn)n∈N for the sequence of subsets of Zd defined by Πn := [0, n)d ⊂⊂ Zd
for each n ∈ N. Remark that |Πn| = nd for any n ∈ N.

Next, introduce two notions of boundary for subsets Λ of Zd. Write ∂Λ for set
of the vertices which are adjacent to Λ in the square lattice. Write ∂nΛ for the set
of vertices in Λ which are at d1-distance at most n from Zd r Λ, for any n ∈ Z≥0;
here d1 is the graph metric corresponding to the square lattice. Write also Λ−n for
Λ r ∂nΛ. If D ⊂ Rd, then write Λ(D) := D ∩ Zd and Λ−n(D) := (Λ(D))−n.

Now let (Λn)n∈N denote a sequence of subsets of Zd. If all sets Λn are finite
with |Λn| → ∞ and |∂Λn|/|Λn| → 0 as n→∞, then (Λn)n∈N is called a Van Hove
sequence. We write (Λn)n∈N ↑ Zd to mean that (Λn)n∈N is a Van Hove sequence. The
sequence (Πn)n∈N is an example of a Van Hove sequence.

σ-Algebras and random fields

If (X,X ) is any measurable space, then write P(X,X ) for the set of probability
measures on it, andM(X,X ) for the set of σ-finite measures. Define the following
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σ-algebras on Ω for any Λ ⊂ Zd:

F := σ(φ(x) : x ∈ Zd), FΛ := σ(φ(x) : x ∈ Λ),

F∇ := σ(φ(y)− φ(x) : x, y ∈ Zd), F∇Λ := σ(φ(y)− φ(x) : x, y ∈ Λ).

A random field is a probability measure in P(Ω,A) for some σ-algebra A ⊂ F . We
introduce the gradient σ-algebra F∇ because it is often not possible to measure the
height φ(x) directly; only the height differences φ(y)− φ(x) are measurable. Note
that, with the above definitions, F∇Λ = F∇ ∩ FΛ. For Λ ⊂ Zd, write πΛ for the
natural probability kernel from (Ω,F) to (EΛ, EΛ) which restricts random fields to Λ.

A cylinder set is a measurable subset of Ω which is contained in FΛ for some
Λ ⊂⊂ Zd; a cylinder function is a function Ω→ R which is FΛ-measurable for some
Λ ⊂⊂ Zd. A cylinder function is called continuous if it is continuous with respect
to the topology of uniform convergence on Ω. Note that all cylinder functions are
continuous whenever E = Z.

Define the further σ-algebras on Ω for any Λ ⊂ Zd:

TΛ := FZdrΛ, T := ∩∆⊂⊂ZdT∆, T ∇Λ := TΛ ∩ F∇, T ∇ := T ∩ F∇.

Sets in T are called tail-measurable.

The topology of (weak) local convergence

The topology of local convergence is the coarsest topology on P(Ω,F∇) that makes
the map µ 7→ µ(f) continuous for any bounded cylinder function f . The topology
of weak local convergence is the coarsest topology on P(Ω,F∇) that makes the map
µ 7→ µ(f) continuous for any bounded continuous cylinder function f . Note that
the two topologies coincide whenever E = Z. Section 3.10 uses a particular basis
B for the topology of weak local convergence on P(Ω,F∇). This basis B is defined
such that it contains exactly all sets B ⊂ P(Ω,F∇) which can be written as finite
intersections of open sets of the form {µ : a < µ(f) < b}, where a, b ∈ R and where f
is a continuous bounded cylinder function.

Shift-invariance and ergodicity

To see convergence of the model at a macroscopic scale it is important that the
model exhibits shift-invariance. For x ∈ Zd, write θx : Zd → Zd, y 7→ y + x.
Throughout this chapter, the letter L denotes a fixed full-rank sublattice of Zd, and
Θ = Θ(L) = {θx : x ∈ L} is the corresponding group of translations of Zd. If φ ∈ Ω
and θ ∈ Θ, then θφ denotes the unique height function satisfying (θφ)(x) = φ(θx) for
all x. Similarly, define

θA := {θφ : φ ∈ A}, θA := {θA : A ∈ A}, θµ : θA → [0,∞], θµ(θA) 7→ µ(A)

for A ⊂ Ω, for A a sub-σ-algebra of F , and for µ a measure on A. Any of these
three objects is called L-invariant if they are invariant under θ for any θ ∈ Θ. If A is
an L-invariant σ-algebra on Ω, then write PL(Ω,A) for the collection of L-invariant
probability measures on (Ω,A). Note that PL(Ω,A) is the set of probability measures
on (Ω,A) such that φ and θφ have the same distribution for any θ ∈ Θ.

Define finally

IL := {A ∈ F : A = θA for all θ ∈ Θ}, I∇L := IL ∩ F∇.
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A gradient measure µ ∈ P(Ω,F∇) is called ergodic if µ is L-invariant and trivial
on I∇L . Write exPL(Ω,F∇) for the set of all such ergodic gradient measures. Write
e(exPL(Ω,F∇)) for the smallest σ-algebra that makes the map A 7→ µ(A) measurable
for all A ∈ F∇.

Specifications

A specification is a family γ = (γΛ)Λ⊂⊂Zd of probability kernels, such that

1. γΛ is a probability kernel from (Ω, TΛ) to (Ω,F) for each Λ ⊂⊂ Zd,

2. µγΛ(A) = µ(A) for any Λ ⊂⊂ Zd, A ∈ TΛ, and µ ∈ P(Ω,F),

3. γΛγ∆ = γΛ for any ∆ ⊂ Λ ⊂⊂ Zd.

The specification defines the local behaviour of the model, and we think of γΛ(·, φ) as
the local Gibbs measure in Λ ⊂⊂ Zd with boundary conditions φ ∈ Ω. A specification
γ is called L-invariant if γΛ(·, θφ) = θγθΛ(·, φ) for any Λ ⊂⊂ Zd, φ ∈ Ω, and θ ∈ Θ.
Call γ a gradient specification if the distribution of ψ + a in γΛ(·, φ) equals that of
ψ in γΛ(·, φ+ a) for any Λ ⊂⊂ Zd, φ ∈ Ω, and a ∈ E, where ψ denotes the random
height function in each local Gibbs measure. Note that each kernel γΛ restricts to a
kernel from (Ω, T ∇Λ ) to (Ω,F∇) whenever γ is a gradient specification.

Monotonicity

An event A ∈ F is called increasing if φ ∈ A and ψ ≥ φ implies ψ ∈ A. Consider
two measures µ1, µ2 ∈ P(Ω,F). Say that µ2 stochastically dominates µ1, and write
µ1 � µ2, if µ1(A) ≤ µ2(A) for any increasing event A. This is equivalent to asking
that there exists a coupling between the two measures such that φ1 ≤ φ2 almost
surely, where the distributions of φ1 and φ2 are prescribed by the measures µ1 and µ2

respectively. A specification γ is called monotone if for each Λ ⊂⊂ Zd, the kernel γΛ

preserves the partial order � on P(Ω,F). Now consider a fixed measurable set A ∈ F ,
and use—in this definition—the shorthand PA for the set {µ ∈ P(Ω,F) : µ(A) = 1}.
The specification γ is called monotone over A if µγΛ ∈ PA for any Λ ⊂⊂ Zd and
µ ∈ PA, and if γΛ preserves the partial order � on PA. The assumption that γ is
monotone over a suitable set of Lipschitz functions is crucial to the proof of strict
convexity of the surface tension.

The Lipschitz property

Consider some fixed constant K ∈ [0,∞). A height function is called K-Lipschitz
if that height function is K-Lipschitz with respect to the graph metric d1 on the
square lattice Zd. A measure is called K-Lipschitz if it is supported on K-Lipschitz
functions. The Lipschitz property is further refined in Subsection 3.3.1.

The slope

Consider µ ∈ PL(Ω,F∇). If φ(y)− φ(x) is µ-integrable for any x, y ∈ Zd, then µ is
said to have finite slope. If µ has finite slope, then shift-invariance of µ implies that
the function

L → R, x 7→ µ(φ(x)− φ(0))
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is additive. In particular, this means that there is a unique linear functional u ∈ (Rd)∗
such that

u(x) = µ(φ(x)− φ(0))

for any x ∈ L ⊂ Rd. This linear functional u is called the slope of µ, and we write
S(µ) for it. The map S is affine: it is clear that S((1− t)µ+ tν) = (1− t)S(µ) + tS(ν)
for any t ∈ [0, 1] and for any µ, ν ∈ PL(Ω,F∇) with finite slope.

If we restrict to K-Lipschitz measures in PL(Ω,F∇) for fixed K ∈ [0,∞), then
all measures have finite slope, and the map µ 7→ S(µ) is then continuous with respect
to the topology of (weak) local convergence.

3.2.2 Interaction potentials, reference measures, and specifications

Interaction potentials

All models are formalised in terms of an interaction potential Φ = (ΦΛ)Λ⊂⊂Zd , which
is a family of potential functions ΦΛ : Ω → R ∪ {∞} where each function ΦΛ is
required to be measurable with respect to FΛ. The potential Φ is called a gradient
potential if each function ΦΛ is in addition F∇Λ -measurable. The potential Φ is
furthermore called L-invariant or periodic if ΦθΛ(φ) = ΦΛ(θφ) for all θ ∈ Θ and for
any φ ∈ Ω. In the sequel, Φ shall always denote a fixed periodic gradient potential.
It is always conventionally assumed that ΦΛ ≡ 0 whenever Λ is a singleton or empty
because the σ-algebra F∇Λ is then trivial.

Next, introduce the Hamiltonian. For Λ ⊂⊂ Zd and ∆ ⊂ Zd containing Λ, let
HΛ,∆ denote the F∇∆ -measurable function from Ω to R ∪ {∞} defined by

HΛ,∆ :=
∑

Γ ⊂⊂ Zd with Γ ⊂ ∆ and with Γ intersecting Λ
ΦΓ.

In particular, we write HΛ := HΛ,Zd and H0
Λ := HΛ,Λ. We shall soon introduce further

conditions on Φ which ensure that the sum in the display is always well-defined and
bounded below. The function HΛ is called the Hamiltonian of Λ and H0

Λ is called
the interior Hamiltonian of Λ. We add a superscript Φ to this notation whenever
multiple interaction potentials are considered and confusion might possibly arise.

Reference measures

For any fixed nonempty Λ ⊂⊂ Zd, there exist natural reference measures on the
measurable spaces (Ω,FΛ) and (Ω,F∇Λ ), in terms of the previously introduced reference
measure λ on (E, E). In the non-gradient setting this is straightforward: the map
φ 7→ φΛ extends to a bijection from FΛ to EΛ, and λΛ is a measure on (EΛ, EΛ).
With only slight abuse of notation, we write also λΛ for the unique measure on
(Ω,FΛ) that makes the map φ 7→ φΛ into a measure-preserving projection from
(Ω,FΛ, λ

Λ) to (EΛ, EΛ, λΛ). We must be more subtle in the gradient setting: we
cannot measure the height of φ directly, and so we cannot pullback the measure λΛ.
Fix therefore some reference point x ∈ Λ and set Λ′ := Λ r {x}, and consider instead
the map φ 7→ φΛ′ − φ(x). This map extends to a bijection from F∇Λ to EΛ′ . Abuse
notation again by writing λΛ−1 for the unique measure on (Ω,F∇Λ ) that turns the
map φ 7→ φΛ′ − φ(x) into a measure-preserving projection from (Ω,F∇Λ , λΛ−1) to
(EΛ′ , EΛ′ , λΛ′). The notation λΛ−1 bears no reference to the choice of x ∈ Λ, as the
resulting measure λΛ−1 is indeed independent of this arbitrary choice. The gradient
reference measures λΛ−1 are not used in the definition of the specification that Φ
generates; they will first appear in the definition of the specific free energy.
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The specification generated by a potential

The potential Φ generates a specification γΦ = (γΦ
Λ )Λ⊂⊂Zd defined by

γΦ
Λ (A, φ) :=

1

ZΦ
Λ (φ)

∫
EΛ

1A(ψφZdrΛ)e−H
Φ
Λ (ψφZdrΛ

)dλΛ(ψ),

for any Λ ⊂⊂ Zd, φ ∈ Ω, and A ∈ F , where ZΦ
Λ (φ) is the normalising constant

ZΦ
Λ (φ) :=

∫
EΛ

e−H
Φ
Λ (ψφZdrΛ

)dλΛ(ψ).

We drop the superscript Φ in this notation unless the choice of potential is ambiguous.
Of course, γΛ(·, φ) is a well-defined probability measure on (Ω,F) only if ZΛ(φ) ∈
(0,∞). Say that φ has finite energy if ΦΛ(φ) <∞ for any Λ ⊂⊂ Zd, and say that φ
is admissible if it has finite energy and ZΛ(φ) ∈ (0,∞) for any Λ ⊂⊂ Zd. To draw a
sample ψ from γΛ(·, φ), set first ψ equal to φ on the complement of Λ, then sample ψΛ

proportional to e−HΛλΛ. Similarly, if µ is a probability measure on (Ω, TΛ) supported
on admissible height functions, then µγΛ is a probability measure on (Ω,F); to sample
from µγΛ one first obtains an auxiliary sample φ from µ; then one draws the final
sample ψ from γΛ(·, φ).

It is important to observe that γ is a gradient specification. This is due to the
fact that Φ is a gradient potential which makes HΛ measurable with respect to F∇,
and because the reference measures λ and λΛ are invariant under translations.

3.2.3 The surface tension

Relative entropy

Recall first the relative entropy. If (X,X , ν) is an arbitrary σ-finite measure space
and µ another probability measure on (X,X ), then the relative entropy of µ with
respect to ν is defined by

H(µ|ν) :=

{
µ(log f) = ν(f log f) if µ� ν where f = dµ/dν,
∞ otherwise.

Remark that H(µ|ν) ∈ R∪ {−∞,∞} in general, and that H(µ|ν) ≥ − log ν(X). If ν
is a finite measure, then we have equality if and only if µ is a scalar multiple of ν. If
A is a sub-σ-algebra of X , then use the shorthand HA(µ|ν) for H(µ|A|ν|A).

The free energy

We are now ready to introduce the free energy. This already requires the presence
of some gradient potential Φ, although we do not yet impose any condition on it.
Consider also some gradient random field µ ∈ P(Ω,F∇), and some finite set Λ ⊂⊂ Zd.
Then the free energy of µ in Λ with respect to Φ is defined by

HΛ(µ|Φ) := HF∇Λ (µ|e−H
0,Φ
Λ λΛ−1) = HF∇Λ (µ|λΛ−1) + µ(H0,Φ

Λ ).

The free energy is sometimes decomposed into the entropy and the energy of µ in
Λ—the two terms in the rightmost expression in the display respectively. (For the
final equality, we adopt the convention that ∞−∞ =∞.)
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The specific free energy

The specific free energy of a shift-invariant random field µ ∈ PL(Ω,F∇) with respect
to Φ is defined by the limit

H(µ|Φ) := lim
n→∞

n−dHΠn(µ|Φ).

The specific free energy thus describes the asymptotic of the normalised free energy of
µ with respect to Φ over a large box. In Section 3.7 we prove that the limit converges
for all Φ in the class SL +WL which is described in Section 3.3. It is also shown in
Section 3.7 that H(·|Φ) is affine and bounded below.

The surface tension

Consider a potential Φ in our class SL +WL, which implies that the specific free
energy is well-defined, affine and bounded below. The surface tension is the function
σ : (Rd)∗ → R ∪ {∞} defined by

σ(u) := inf
µ ∈ PL(Ω,F∇) with S(µ) = u

H(µ|Φ).

The function σ must be convex because both S(·) and H(·|Φ) are affine. We shall
write UΦ for the interior of the convex set {σ <∞} ⊂ (Rd)∗. Slopes in UΦ are called
allowable. The major contribution of this chapter is that we show that σ is strictly
convex on UΦ whenever γΦ is monotone over the set of admissible height functions and
if Φ is in our class SL +WL (and under an additional condition whenever E = Z).

3.3 The class of models under consideration
In the following four subsections, we describe the conditions which are imposed on
the model of interest: these are specific to this work, and this is where we broaden
the class of models for which strict convexity of the surface tension can be derived.
Subsection 3.3.1 describes the Lipschitz setting in more detail. We take great care
in formulating the Lipschitz condition: this is not necessary for the arguments to
work, but it rather minimises the restrictions imposed on the class of models. Let us
now consider the potential which generates the model. The potential of the model of
interest must decompose as the sum of two potentials, where the first component is
a strong, local potential which—at the very least—enforces the Lipschitz condition
(Subsection 3.3.2), and where the second component is a weak interaction of infinite
range (Subsection 3.3.3). The word weak here is only relative to the word strong that
was used to describe the first potential: in particular, we do not mean to imply that
the second component demonstrates any sort of decay over long distances. It is the
second potential that allows us to assign energy to large geometric objects, such as
level sets. Subsection 3.3.4 finally gives an overview of the objects describing the
model of interest, and which are considered fixed throughout most of the analysis.

3.3.1 Local Lipschitz constraints
We require that a height function has finite energy if and only if it is Lipschitz with
respect to the correct quasimetric. We shall allow quasimetrics (subject to certain
necessary constraints) in order to be as general as possible. The Lipschitz constraint
must be enforced locally by the potential, due to the nature of the arguments that we

72



use to derive the main result. This means that for each vertex x ∈ Zd we are allowed
to enforce a Lipschitz constraint between x and only finitely many other vertices
y ∈ Zd. In other words, what we have in mind is a set A ⊂ Zd × Zd × R, such that a
height function φ is Lipschitz if and only if φ(y)− φ(x) ≤ a for any (x, y, a) ∈ A, and
such that A becomes a finite set once we identify each triple of the form (x, y, a) with
all triples of the form (θx, θy, a) as θ ranges over Θ. The local Lipschitz constraint
also enforces that the functions are globally Lipschitz with respect to the correct
quasimetric. This is formalised as follows.

Definition 3.3.1 (local Lipschitz constraint). Call an edge set A on Zd an admissible
graph if A is L-invariant and makes (Zd,A) a connected graph of bounded degree.
Call a function q : Zd × Zd → R an admissible quasimetric if

1. q(x, x) = 0 for any x ∈ Zd,

2. q(x, y) + q(y, x) > 0 for any x, y ∈ Zd distinct,

3. q(x, z) ≤ q(x, y) + q(y, z) for any x, y, z ∈ Zd,

4. q(θx, θy) = q(x, y) for any x, y ∈ Zd and θ ∈ Θ.

Such a function is called integral if it takes integral values. A local Lipschitz constraint
is a pair (A, q) where

1. A is an admissible graph,

2. q is an admissible quasimetric,

3. q is maximal among all admissible quasimetrics that equal q on A, in the
sense that p ≤ q for any admissible quasimetric p with p(x, y) ≤ q(x, y) for all
{x, y} ∈ A.

If (A, q) is a local Lipschitz constraint and ε ≥ 0 a sufficiently small constant, then
write qε for the largest admissible quasimetric subject to qε(x, y) ≤ q(x, y)− ε for all
{x, y} ∈ A. (It is demonstrated in Proposition 3.6.5 that this is indeed well-defined for
ε > 0 sufficiently small.) Note that the resulting pair (A, qε) is also a local Lipschitz
constraint.

Remarks. 1. The last condition in the definition of a local Lipschitz constraint
guarantees that q is fully determined by its values on the edges in A.

2. We shall sometimes omit the reference to A and simply call q the local Lipschitz
constraint. If (A, q) is a local Lipschitz constraint and B another admissible
graph on Zd, then the pair (A∪B, q) is also a local Lipschitz constraint producing
the same quasimetric q. We shall always assume, without loss of generality,
that A contains the edges of the square lattice.

3. If q is a local Lipschitz constraint, then there is a constant K <∞ such that
Kd1 ≥ q.

4. We do not impose that q takes values in [0,∞). This restriction is not necessary
to make the arguments work.

From now on, we shall always have in mind a fixed local Lipschitz constraint
(A, q).
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Definition 3.3.2 (q-Lipschitz). A function φ : Zd → R is called q-Lipschitz if, for
every x, y ∈ Zd,

φ(y)− φ(x) ≤ q(x, y).

The function φ is called q-Lipschitz at z ∈ Zd if this inequality is satisfied for any
edge {x, y} ∈ A containing z. Naturally extend these definitions to cover the cases
that φ : Λ → R for some Λ ⊂ Zd. Write Ωq for the collection of q-Lipschitz height
functions. A measure is called q-Lipschitz if it is supported on Ωq. A specification is
called q-Lipschitz if it maps q-Lipschitz measures to q-Lipschitz measures. Finally, a
function is called strictly q-Lipschitz if it is qε-Lipschitz for ε > 0 sufficiently small.

We now construct a number of objects which derive from q. These are necessary to
state the main results, which address the macroscopic behaviour of Lipschitz surfaces.

Definition 3.3.3 (Uq, ‖ · ‖q). By a slope we simply mean an element u in the dual
space (Rd)∗ of Rd. Write Uq for the interior of the set of slopes u such that u|L is
q-Lipschitz. The set Uq is nonempty and convex—this follows from the definition of
a local Lipschitz constraint; see Lemma 3.6.1. Introduce furthermore the function
‖ · ‖q : Rd → R defined by

‖x‖q := sup{u(x) : u ∈ Uq}.

The function ‖ · ‖q is positive homogeneous: we have ‖ax‖q = a‖x‖q for a ∈ [0,∞)
and x ∈ Rd. It also satisfies the triangle inequality, in the sense that ‖x + y‖q ≤
‖x‖q + ‖y‖q for any x, y ∈ Rd.

Definition 3.3.4 (‖ · ‖-Lipschitz). If ‖ · ‖ : Rd → R is any positive homogeneous
function satisfying the triangle inequality, then any other function f : D → R defined
on a subset D of Rd is called ‖ · ‖-Lipschitz if f(y)− f(x) ≤ ‖y− x‖ for any x, y ∈ D.
The function f is called strictly ‖ · ‖q-Lipschitz if it is ‖ · ‖qε-Lipschitz for some
ε > 0. If D is open, then f is called locally strictly ‖ · ‖q-Lipschitz if f |K is strictly
‖ · ‖q-Lipschitz for all compact sets K ⊂ D.

For example, Uq is the interior of the set of slopes u ∈ (Rd)∗ which are ‖ · ‖q-
Lipschitz.

3.3.2 Strong interactions
Let Ψ denote an arbitrary periodic gradient potential. The potential Ψ is called
positive if ΨΛ ≥ 0 for any Λ ⊂⊂ Zd. The potential Ψ is said to have finite range if
ΨΛ ≡ 0 whenever the diameter of Λ—in the graph metric d1 on the square lattice—
exceeds some fixed constant R ∈ N; in that case the smallest such R is called the range
of Ψ. The potential Ψ is called Lipschitz if there exists a local Lipschitz constraint
(A, q) such that ΨΛ(φ) =∞ if and only if Λ = {x, y} ∈ A and φ(y)− φ(x) > q(x, y)
for some x, y ∈ Zd. If E = R and Ψ Lipschitz with constraint (A, q), then Ψ is
called locally bounded if for any ε > 0 sufficiently small, there exists a fixed constant
Cε <∞, such that

HΨ
{x}(φ) ≤ Cε

for any x ∈ Zd and for any φ ∈ Ω which is qε-Lipschitz at x.

Definition 3.3.5 (strong interaction, SL). A potential Ψ is called a strong interaction
if Ψ has all of the above properties, that is, if Ψ is a positive Lipschitz periodic
gradient potential of finite range, and if it is locally bounded in the case that E = R.
We shall write SL for the collection of strong interactions.
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The class SL includes all so-called Lipschitz simply attractive potentials. These
are convex Lipschitz nearest-neighbour interactions, see [54].

3.3.3 Weak interactions
Let Ξ denote an arbitrary periodic gradient potential.

Definition 3.3.6 (summability). The potential Ξ is called summable if it has finite
norm

‖Ξ‖ := sup
(x,φ)∈Zd×Ω

∑
Λ ⊂⊂ Zd with x ∈ Λ

|ΞΛ(φ)|.

This requirement is significantly weaker than the absolutely summable setting of
Georgii [20].

Definition 3.3.7 (amenability). By an amenable function we mean a function f
which assigns a number in [0,∞) to each finite subset of Zd, such that:

1. f(Λ) = f(θΛ) for all Λ ⊂⊂ Zd and for any θ ∈ Θ,

2. f(Λ ∪∆) ≤ f(Λ) + f(∆) for all Λ,∆ ⊂⊂ Zd disjoint,

3. f(Λn) = o(|Λn|) as n→∞ for any (Λn)n∈N ↑ Zd.
Definition 3.3.8 (lower exterior bound). Let us now turn back to the potential Ξ
and define, for any Λ ⊂⊂ Zd,

e−(Λ) := sup
φ∈Ω

∑
∆ ⊂⊂ Zd with ∆ intersecting both Λ and Zd r Λ

|Ξ∆(φ)|.

The function e−(·) is called the lower exterior bound of Ξ.

The key property of the function e−(·) is that |HΞ
Λ −H

0,Ξ
Λ | ≤ e−(Λ). The lower

exterior bound satisfies Properties 1 and 2 from the definition of an amenable function;
this is immediate from the definition.

Definition 3.3.9 (weak interaction,WL). A weak interaction is a summable periodic
gradient potential for which the lower exterior bound is amenable. Write WL for the
collection of weak interactions.

It is straightforwardly verified that amenability of e−(·) is equivalent to asking
that e−(Πn) = o(nd) as n→∞. Remark that (WL, ‖ · ‖) is a Banach space.

3.3.4 Overview
Let us fix a number of notations, in order to avoid an excessive number of declarations.
We notify the reader of any deviation from this notation. We had already agreed that
the choices for d ≥ 2 and E ∈ {Z,R} are fixed, and that L denotes a fixed full-rank
sublattice of Zd with corresponding translation group Θ. The letter Φ denotes a fixed
potential in SL +WL, and we fix some pair (Ψ,Ξ) ∈ SL ×WL such that Φ = Ψ + Ξ.
This decomposition is not unique, but this is never a problem. The specification
generated by Φ is denoted γ = γΦ. The pair (A, q) always denotes the local Lipschitz
constraint corresponding to Ψ, and the range of Ψ is denoted by R. If E = Z, then
q is always assumed to be integral. The function e−(·) denotes the lower exterior
bound of Ξ. Finally, let K ∈ (0,∞) denote the smallest constant such that Kd1 ≥ q,
and let N ∈ N denote the smallest positive integer such that N · Zd ⊂ L.
Definition 3.3.10. The potential Φ ∈ SL +WL is called monotone if the induced
specification γ = γΦ is monotone over Ωq.
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3.4 Main results
The motivation for writing this chapter was to demonstrate that the surface tension is
strictly convex on UΦ if the potential of interest is in the class SL+WL and monotone.
If E = Z, then we require an extra condition to be met, but we also demonstrate
that this condition is satisfied for many natural models. This section contains an
overview of the main results, including several results and applications which are of
independent interest. The results are presented roughly in the order in which they
appear in the chapter.

3.4.1 The specific free energy and its minimisers
The specific free energy functional plays a fundamental role in the analysis. The
following result is therefore of independent interest in the study of Lipschitz random
surfaces; it is a direct extension of a result of Sheffield [54] to the setting of this
chapter.

Theorem 3.4.1 (specific free energy). If Φ ∈ SL +WL, then the specific free energy
functional

H(·|Φ) : PL(Ω,F∇)→ R ∪ {∞}, µ 7→ lim
n→∞

n−dHΠn(µ|Φ)

is well-defined, affine, bounded below, lower-semicontinuous, and for each C ∈ R its
lower level set

MC := {µ ∈ PL(Ω,F∇) : H(µ|Φ) ≤ C}

is a compact Polish space, with respect to the topology of (weak) local convergence. In
fact, the two topologies coincide on each set MC .

A measure µ ∈ PL(Ω,F∇) is called a minimiser of the specific free energy, or
simply a minimiser, if it satisfies the equation

H(µ|Φ) = σ(S(µ)) <∞.

For the purpose of deriving the main result, all that we require is that such minimisers
have finite energy, in a sense which is similar to the notion of finite energy in the
original paper of Burton and Keane [4]. There is a canonical way to translate the
concept of finite energy to the gradient Lipschitz setting: we shall see that the
following result fits our arguments. Recall that Ωq denotes the set of q-Lipschitz
height functions, and that πΛ is the kernel which restrict measures to Λ, for any
Λ ⊂ Zd.

Theorem 3.4.2 (finite energy). Consider Φ ∈ SL +WL, and suppose that µ ∈
PL(Ω,F∇) is a minimiser. Then for any Λ ⊂⊂ Zd, we have

1Ωq(µπZdrΛ × λΛ)� µ.

In [54], finite energy follows from the variational principle, which asserts that shift-
invariant measures µ which satisfy H(µ|Φ) = σ(S(µ)) must also be Gibbs measures
with respect to the specification γ = γΦ induced by the potential Φ—which has finite
range. In the infinite-range setting one cannot hope for such a statement, because
the specification γ is not necessarily quasilocal. This pathology, and its relation
to the variational principle, is discussed extensively in Chapter 2. One of the key
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observations in that article is that minimisers of the specific free energy must have
finite energy, even if the concept of a Gibbs measure is not well-defined because the
specification fails to be quasilocal. There, finite energy is an immediate corollary of a
result (Lemma 5.4) which is not quite equivalent to the variational principle, but it is
“as close as one expects to get” to it in the non-quasilocal setting. We shall follow the
same strategy here: the following theorem states the strongest result on minimisers of
the specific free energy, implies directly that such minimisers have finite energy, and
is a direct translate of Lemma 2.5.7 in Chapter 2 to the Lipschitz gradient setting.
Let us first introduce the necessary definitions for the analysis of quasilocality.

Definition 3.4.3 (quasilocality, almost Gibbs measure). Consider two finite sets
Λ ⊂ ∆ ⊂⊂ Zd. Denote by AΛ,∆,φ the set of probability measures on (EΛ, EΛ) of the
form µγΛπΛ, where µ is any measure in P(Ω,F) subject only to µπ∆ = δφ∆

. In other
words, AΛ,∆,φ is the set of local Gibbs measures in Λ (and restricted to Λ) given
(mixed) boundary conditions which match φ on ∆. Write C(A) for the closure of any
A ⊂ P(EΛ, EΛ) in the strong topology, and define

AΛ,φ := ∩∆⊂⊂ZdC(AΛ,∆,φ).

A height function φ ∈ Ω is called a point of quasilocality if AΛ,φ = {δφγΛπΛ} =
{γΛ(·, φ)πΛ} for any Λ ⊂⊂ Zd. Write Ωγ for the set of points of quasilocality. A
measure µ ∈ P(Ω,F) is called an almost Gibbs measure whenever µ(Ωγ) = 1 and
µ = µγΛ for any Λ ⊂⊂ Zd. The definition of an almost Gibbs measure is the
same for gradient measures µ ∈ P(Ω,F∇)—noting that Ωγ ∈ F∇ as γ is a gradient
specification. Almost Gibbs measures are also called Gibbs measures whenever
Ωγ = Ω.

Let us now state the strongest result on minimisers, which is of independent
interest.

Theorem 3.4.4 (minimisers of the specific free energy). Consider Φ ∈ SL +WL,
and suppose that µ ∈ PL(Ω,F∇) is a minimiser. Fix Λ ⊂⊂ Zd, and write µφ for
the regular conditional probability distribution of µ on (Ω,F) corresponding to the
projection map Ω→ EZdrΛ. Then for µ-almost every φ ∈ Ω, we have µφπΛ ∈ AΛ,φ.
In particular, if µ(Ωγ) = 1, then µ is an almost Gibbs measure, and if Ωγ = Ω, then
µ is a Gibbs measure.

We shall furthermore demonstrate that in each of our applications, all minimisers
are indeed (almost) Gibbs measures. We finally derive the following result.

Theorem 3.4.5 (existence of ergodic minimisers). Suppose that Φ ∈ SL+WL. Then
for any exposed point u ∈ ŪΦ of σ, there exists an ergodic gradient measure µ of slope
u which is also a minimiser. In particular, if σ is strictly convex on UΦ, then for
each u ∈ UΦ, there is an ergodic minimiser of that slope.

Theorem 3.4.1 is proven in Section 3.7. Theorems 3.4.2 and 3.4.4 are proven in
Section 3.8. Theorem 3.4.5 is proven in Section 3.9.

3.4.2 Large deviations principle and variational principle
In Section 3.11 we prove a large deviations principle (LDP) of similar strength to
the one stated in Chapter 7 of [54], with the noteworthy difference that we express it
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directly in terms of the Gibbs specification. This LDP captures both the macroscopic
profile of each sample, as well as its local statistics. In this subsection however, we
shall state a simpler LDP: one that captures only the macroscopic profile. By doing
so we deliver on the premise that limit shapes are characterised by a variational
principle, without spending many pages discussing the exact topology for the LDP
with local statistics. However, the full LDP is also of independent interest, and we
refer the interested reader to Subsection 3.11.1. Before stating the LDP, we must
first describe how a sequence of discrete boundary conditions can approximate a
continuous boundary profile, and we must also introduce a topology which captures
the macroscopic profile of each sample. Let Φ denote a fixed potential throughout
this subsection, and adopt the standard notation from Subsection 3.3.4.

Definition 3.4.6 (asymptotic boundary profile). A domain is a nonempty bounded
open subset of Rd such that its boundary has zero Lebesgue measure. An asymptotic
boundary profile is a pair (D, b) where D is a domain and b a ‖ · ‖q-Lipschitz function
on ∂D. If E = R, then call an asymptotic boundary profile (D, b) good if b is
strictly ‖ · ‖q-Lipschitz. If E = Z, then call an asymptotic boundary profile good if
it is non-taut. An asymptotic boundary profile (D, b) is called non-taut if b has an
extension b̄ to D̄ such that b̄|D is locally strictly ‖ · ‖q-Lipschitz. This is equivalent to
asking that the largest and smallest ‖ · ‖q-Lipschitz extensions b± of b to D̄ satisfy
b− < b+ on D.

Definition 3.4.7 (discrete approximations). Let (D, b) denote an asymptotic bound-
ary profile. Call a sequence of pairs (Dn, bn)n∈N of finite subsets of Zd and height
functions an approximation of (D, b) if

1. For all n ∈ N, the function bn is q-Lipschitz if E = Z or strictly q-Lipschitz if
E = R,

2. We have 1
nDn → D in the Hausdorff metric on Rd,

3. We have 1
n Graph(bn|∂Dn)→ Graph(b) in the Hausdorff metric on Rd × R.

Moreover, if E = R, then an approximation (Dn, bn)n∈N is called good if the constant
ε > 0 which makes each function bn a qε-Lipschitz function, is independent of n. If
E = Z, then any approximation is called good.

We have in mind a good approximation (Dn, bn)n∈N of some fixed good asymptotic
boundary profile (D, b). The sequence of local Gibbs measures which are of interest
in the LDP is the sequence (γn)n∈N defined by γn := γDn(·, bn). All samples from
the sequence of measures (γn)n∈N must be brought to the same topological space, in
order for us to formulate the LDP. We will now describe this topology, as well as the
map from Ω to this topological space.

Definition 3.4.8 (topology for macroscopic profiles). For any U ⊂ Rd, write Lip(U)
for the set of real-valued K‖ · ‖1-Lipschitz functions on U , where we recall that K is
minimal subject to Kd1 ≥ q. Suppose given a sample φ from γn. Define the scaled
interpolation Gn(φ) ∈ Lip(D̄) of φ, which captures the global shape of φ, as follows.
The sample φ is almost surely q-Lipschitz, and therefore also Kd1-Lipschitz. First,
write φ̄ : Rd → R for the smallest K‖ · ‖1-Lipschitz extension of φ to Rd. Next, we
simply scale back each sample by n and restrict it to the set D̄. Formally, this means
that we define

Gn(φ) : D̄ → R, x 7→ 1

n
φ̄(nx).
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This function is K‖ · ‖1-Lipschitz, that is, Gn(φ) ∈ Lip(D̄). Endow the space Lip(D̄)
with the topology of uniform convergence, denoted by X∞. The map Gn : Ω→ Lip(D̄)
captures the global profile of the height functions in the large deviations principle.

Definition 3.4.9 (rate function, pressure). The rate function associated to the profile
(D, b) is the function I : Lip(D̄)→ [0,∞] defined by

I(f) := −PΦ(D, b) +

∫
D
σ(∇f(x))dx

if f |∂D = b and I(f) := ∞ otherwise. Here PΦ(D, b) is the pressure associated to
this profile, which is defined precisely such that the minimum of I is zero.

Theorem 3.4.10 (large deviations principle). Let Φ ∈ SL+WL, and let (Dn, bn)n∈N
denote a good approximation of some good asymptotic profile (D, b). Let γ∗n denote the
pushforward of γn := γDn(·, bn) along the map Gn, for any n ∈ N. Then the sequence
of probability measures (γ∗n)n∈N satisfies a large deviations principle with speed nd

and rate function I on the topological space (Lip(D̄),X∞). Moreover, the sequence of
normalising constants (Zn)n∈N := (ZDn(bn))n∈N satisfies −n−d logZn → PΦ(D, g) as
n→∞.

Corollary 3.4.11 (variational principle). Let Φ ∈ SL +WL, and let (Dn, bn)n∈N
denote a good approximation of some good asymptotic profile (D, b). Let γ∗n denote the
pushforward of γn := γDn(·, bn) along the map Gn, for any n ∈ N. Write fn for the
random function in γ∗n, which—as a random object—takes values in Lip(D̄). If σ is
strictly convex on UΦ, then the random function fn converges to the unique minimiser
f∗ of the rate function I, in probability in the topology of uniform convergence as
n→∞. In other words, f∗ is the unique minimiser of the integral∫

D
σ(∇f(x))dx

over all Lipschitz functions f : D̄ → R which equal b on the boundary of D. If
however σ fails to be strictly convex on UΦ, then for any neighbourhood A of the set
of minimisers of the integral in the topology of uniform convergence, we have fn ∈ A
with high probability as n→∞.

3.4.3 The surface tension
Let us now state the motivating result on the surface tension.

Theorem 3.4.12 (strict convexity of the surface tension). Let Φ denote a potential
in SL +WL which is monotone.

1. If E = R, then σ is strictly convex on UΦ,

2. If E = Z, then σ is strictly convex on UΦ if for any affine map h : (Rd)∗ → R
with h ≤ σ, the set {h = σ} ∩ ∂UΦ is convex. In particular, σ is strictly convex
on UΦ if at least one of the following conditions is satisfied:

(a) σ is affine on ∂UΦ, but not on ŪΦ,

(b) σ is not affine on [u1, u2] for any distinct u1, u2 ∈ ∂UΦ such that [u1, u2] 6⊂
∂UΦ.

79



Strict convexity of the surface tension is important because of Theorem 3.4.5,
Theorem 3.4.10, and Corollary 3.4.11. Let us also mention some other properties of
the surface tension which are useful to keep in mind.

Theorem 3.4.13 (general properties of the surface tension). If Φ ∈ SL +WL, then

1. We have UΦ = Uq,

2. If E = R, then σ(u) tends to ∞ as u approaches the boundary of UΦ,

3. If E = Z, then σ is bounded and continuous on the closure of UΦ.

Theorem 3.4.12 is proven in Section 3.12, and Theorem 3.4.13 is proven in
Section 3.7.

3.4.4 Note on the Lipschitz setting
Local Lipschitz constraints are designed to be as flexible as possible. Essential in the
argument is that a height function φ : Zd → E has finite energy if and only if it is
Lipschitz with respect to the local Lipschitz constraint. This means that we can rely on
the Kirszbraun theorem (Theorem 3.6.4) to join together Lipschitz functions defined
on disjoint parts of the space. However, this formulation is sometimes inconvenient.
There are, as we shall see, several natural models in which the admissible height
functions are exactly the graph homomorphisms from Zd to Z: these are functions
φ : Zd → Z which satisfy φ(0) ∈ 2Z and |φ(y) − φ(x)| = 1 for each edge {x, y} of
the square lattice. For example, the canonical height functions corresponding to
the six-vertex model are precisely the graph homomorphisms from Z2 to Z. Since
the zero transition is not allowed, it might appear that this model does not fit the
Lipschitz framework: it is the first if in the if and only if that is violated. However,
this problem is only cosmetic in nature: by a simple transformation one can move
from graph homomorphisms to the Lipschitz framework. Write h : Zd → Z for the
function h(x) :=

∑
i xi, and consider the map

φ 7→ (φ+ h)/2.

This map is a bijection from the set of graph homomorphisms to the set of functions
which are q-Lipschitz for q defined by

q(x, y) :=
∑

i
0 ∨ (y − x)i.

By applying this transformation, it is thus clear that models of graph homomorphisms
do fit into the local Lipschitz setting of this chapter. In fact, the exact same trick
applies to dimer models, and perhaps other models of discrete height functions.

3.4.5 Application to submodular potentials

A potential Φ is said to be submodular if for every Λ ⊂⊂ Zd, ΦΛ has the property
that

ΦΛ(φ ∧ ψ) + ΦΛ(φ ∨ ψ) ≤ ΦΛ(φ) + ΦΛ(ψ).

Sheffield proposes this family of potentials as a natural generalisation of simply
attractive potentials, and asks if similar results as the ones proved for simply attractive
potentials in [54] could be proved for finite-range submodular potentials. We provide
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an answer to this question for the case that the model is also Lipschitz. (In fact, we
do not even require the potential to be finite-range.) It is easy to see that submodular
potentials generate monotone specifications. If E = R and Φ a submodular Lipschitz
potential fitting the framework of this thesis (which is a very mild requirement),
then we derive immediately from Theorem 3.4.12 that the surface tension is strictly
convex. If E = Z, then we must also fulfill the extra condition in Theorem 3.4.12.
We show that we can fulfill the extra condition if all shift-invariant measures µ which
are supported on q-Lipschitz functions and which have S(µ) ∈ ∂UΦ, are frozen, in
the sense that for any Λ ⊂⊂ Zd, the values of φΛ depend deterministically on φ∂RΛ

in µ. This is a property of the local Lipschitz constraint q, and such local Lipschitz
constraints are called freezing.

Theorem 3.4.14 (strict convexity for submodular potentials). Suppose that the
potential Φ ∈ SL +WL is submodular. Then it is monotone. Moreover,

1. If E = R, then σ is strictly convex on UΦ,

2. If E = Z, then σ is strictly convex on UΦ if the local Lipschitz constraint q is
freezing.

Note that q is automatically freezing if it is Zd-invariant.

Of course, Theorem 3.4.5 applies, and if the potential is finite-range, then the
specification is quasilocal (Ω = Ωγ) so that all minimisers are Gibbs measures
(Theorem 3.4.4).

3.4.6 Application to tree-valued graph homomorphisms
The flexibility of the main theorem in this chapter can also be used to prove statements
about the behaviour of random functions taking values in target spaces other than
Z and R. A noteworthy example is the model of tree-valued graph homomorphisms
described in [44]. In this context, tree-valued graph homomorphisms are functions
from Zd to a k-regular tree Tk which also map the edges of the square lattice to the
edges of the tree. Regular trees are natural objects in several fields of mathematics: in
group theory, for example, they arise as Cayley graphs of free groups on finitely many
generators. As a significant result in [44], the authors characterise the surface tension
for the model (there named entropy) and show that it is equivalent to the number of
graph homomorphisms with nearly-linear boundary conditions. This entropy function
describes the macroscopic behaviour of the model, as is extensively discussed in [44].
We confirm the conjecture in [44], which asserts that this entropy function is strictly
convex. We can do so because the model of uniformly random Tk-valued graph
homomorphisms can be translated into a model of Z-valued graph homomorphisms
after introducing an infinite-range interaction.

Let us now rigorously describe the conjecture which we prove is correct. Write U
for the set of slopes u ∈ (Rd)∗ such that |u(ei)| < 1 for each element ei in the natural
basis of Rd. For fixed u ∈ Ū , write φu : Zd → Z for the graph homomorphism defined
by

φu(x) := bu(x)c+

{
0 if d1(0, x) ≡ bu(x)c mod 2,
1 if d1(0, x) ≡ bu(x)c+ 1 mod 2.

Then φu approximates u and it thus nearly linear, in the sense that ‖φu−u|Zd‖∞ ≤ 1.
Let g denote a bi-infinite geodesic through Tk, that is, a Z-indexed sequence of vertices
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g = (gn)n∈Z ⊂ Tk such that dTk(gn, gm) = |m− n| for any n,m ∈ Z. The geodesic g
is thought of as a copy of Z in Tk, and is used as reference frame. Write φ̃u : Zd → Tk
for the graph homomorphism defined by φ̃u(x) := gφu(x) for every x ∈ Zd. It is
shown in [44] that the macroscopic behaviour of uniformly random Tk-valued graph
homomorphisms is characterised by the function

Ent : Ū → [− log k, 0], u 7→ lim
n→∞

−n−d log |{φ̃ ∈ Ω̃ : φ̃ZdrΠn = φ̃uZdrΠn
}|,

where Ω̃ denotes the set of all graph homomorphisms from Zd to Tk. It is conjectured
in [44] that Ent is strictly convex on U , which we prove is correct. Figure 3.2 displays
a sample from the model; the limit shape is clearly visible.

Theorem 3.4.15 (strict convexity of the entropy for tree-valued graph homomor-
phisms). For any d, k ≥ 2, the entropy function Ent : Ū → [− log k, 0] associated
to uniformly random graph homomorphisms from Zd to a k-regular tree, is strictly
convex on U .

3.5 Moats
The following section is at the heart of this work. Its purpose is to show that
for a specification which is stochastically monotone, two configurations sampled
independently with the same boundary conditions are, on the scale of the specific
free energy, at least as likely to oscillate a large number of times than to deviate from
each other macroscopically. Moats are introduced in Definition 3.5.2 to formalise this
statement. Informally, moats are clusters surrounding a given connected set, and
on which the height difference between two configurations is prescribed between two
fixed bounds. The proof relies crucially on the reflection principle which is stated in
Lemma 3.5.1.

In this section, the implicit graph structure on Zd is always the square lattice.
As per usual, (A, q) denotes the local Lipschitz constraint, and K ∈ (0,∞) is chosen
minimal subject to Kd1 ≥ q. We have in mind a gradient specification γ which
is q-Lipschitz and monotone over Ωq. From this specification we draw two height
functions φ1, φ2 ∈ Ω, and f shall generally denote the difference function φ1 − φ2,
which is thus 2K-Lipschitz.

3.5.1 Reflection principle
We first state and prove the reflection principle, which does not rely on the Lipschitz
property. Throughout this section only, we shall adopt the following notation. Suppose
that f1 and f2 are random functions in Ω, in some probability measures µ1 and µ2

respectively. Then write f1 � f2 if f1 is stochastically dominated by f2, that is,
µ1(f1 ∈ A) ≤ µ2(f2 ∈ A) for any increasing set A ∈ F . Note that this notation still
makes sense if µ1 = µ2, even if µ1 and µ2 are finite measures rather than probability
measures.

Lemma 3.5.1 (Reflection principle). Let γ = (γΛ)Λ⊂⊂Zd denote a monotone gradient
specification. Fix Λ ⊂⊂ Zd, and consider a probability measure µ on the product
space (Ω2,F2), writing (φ1, φ2) for the random pair of height functions, and with
f := φ1 − φ2. Suppose that

µ = µ(γΛ × γΛ).
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Figure 3.2: This figure shows the boundaries of the upper level sets of the horocylic
height function (presented in Subsection 3.13.3) of a random T3-valued graph homo-
morphism. The boundary conditions resemble the Aztec diamond for domino tilings.
The simulation hints at the presence of an arctic circle, alongside the limit shape
which we prove appears inside.
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If µ-almost surely fZdrΛ ≥ a for some a ∈ R, then

−f � f − 2a.

Similarly, if µ-almost surely fZdrΛ ≤ b for some b ∈ R, then

f � −f + 2b.

The same holds true if µ is a finite measure rather than a probability measure.

Proof. We focus on the first statement; the second statement then follows by symmetry.
Fix a ∈ R. Suppose first that µ restricted to Zd r Λ is a Dirac measure, that is,

µ = γΛ(·, ψ1)× γΛ(·, ψ2)

for some ψ1, ψ2 ∈ Ω with ψ1 − ψ2 ≥ a. As γ is a monotone gradient specification, we
have

φ1 � φ2 + a.

But φ1 and φ2 are independent, and therefore

−f = φ2 − φ1 � (φ1 − a)− (φ2 + a) = f − 2a.

This inequality is generalised to the case that µ restricted to Zd r Λ is not a Dirac
measure, simply by averaging the inequality over all possible values of φ1 and φ2 on
Zd r Λ with respect to µ.

3.5.2 Definition of moats

Definition 3.5.2 (Moats). Let f : Zd → R be a 2K-Lipschitz function and Λ ⊂⊂ Zd
connected. Consider two real numbers a and b with b− a ≥ 4K.

1. A set M ⊂ Zd is a called an a, b-moat of (f,Λ) or simply a moat if M is a finite
connected component of the set {a ≤ f < b} = {x ∈ Zd : a ≤ f(x) < b} ⊂ Zd
such that Λ is contained in a bounded connected component of Zd rM .

2. The boundary of M , that is, the set of vertices x ∈ Zd rM adjacent to M , is
denoted by ∂M . Write M̄ for the closure of M , that is, M ∪ ∂M .

3. The connected component of Zd rM containing Λ is called the inside of M ,
and the inside boundary is the intersection of the inside with ∂M . Write MΛ

and ∂ΛM for the inside and the inside boundary respectively.

4. The unbounded connected component of Zd rM is called the outside of M ,
and the outside boundary is the intersection of the outside with ∂M . Write
M∞ and ∂∞M for the outside and the outside boundary respectively.

5. A moat M is said to surround another moat N , if N ⊂MΛ.

6. A moat M is called a climbing moat if f∂∞M < a and f∂ΛM ≥ b and it is called
a descending moat if f∂∞M ≥ b and f∂ΛM < a. From now on, we shall only
consider moats which are either climbing or descending; when speaking of a
moat, it is implicit that it belongs to one of these categories.
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7. A finite sequence of moats (Mk)1≤k≤n is called nested if Mk surrounds Mk+1

for all 1 ≤ k < n, and if the moats are alternatingly climbing and descending,
with M1 climbing.

We immediately collect a number of important properties.

Proposition 3.5.3. Work in the context of the previous definition.

1. There exists at most one moat M with x ∈M , for any fixed x ∈ Zd.

2. If M is a moat, then a− 2K ≤ f < b+ 2K on M̄ .

3. Suppose that M is a moat, and that p = (pk)0≤k≤n ⊂ Zd is a path through the
square lattice from MΛ to M∞. Then pk ∈ M for at least b(b − a)/2Kc ≥ 2
consecutive integers k.

4. If ∆ ⊂⊂ Zd contains Λ, then the number of moats M of (f,Λ) for which
M ∪MΛ ⊂ ∆, is bounded by the d1-distance from Λ to Zd r ∆.

5. Suppose that M is a moat of (f,Λ), and that g is another 2K-Lipschitz function
with g = f on M̄ . Then M is also a moat of (g,Λ). If M was climbing (resp.
descending) w.r.t. (f,Λ) then it is climbing (resp. descending) w.r.t. (g,Λ). In
other words, for M ⊂ Zd, the event

{M is a (climbing or descending) moat of (f,Λ)}

is F2
M̄
-measurable.

6. Suppose that A ⊂ Zd such that Λ is contained in a finite connected component
of ZdrA, and write AΛ for this connected component. If f < a on A and f ≥ b
on Λ, then AΛ contains a climbing moat. If f ≥ b on A and f < a on Λ, then
AΛ contains a descending moat.

7. If a′ and b′ are real numbers with b′ − a′ ≥ 4K and [a′, b′] ⊂ [a, b], then any
a, b-moat contains an a′, b′-moat.

Proof. The first three statements follow from the definitions, where it is important
that f is 2K-Lipschitz and that any moat is either climbing or descending. For the
fourth statement, observe that a path of minimal length from Λ to Zd r ∆ through
the square lattice must intersect any moat M for which M ∪MΛ ⊂ ∆. The fifth
statement is immediate from the definition. The sixth statement follows from the
connectivity properties of the square lattice, as well as the fact that f is 2K-Lipschitz.
The final statement is a corollary of the sixth.

3.5.3 Moats and macroscopic deviations

Theorem 3.5.4. Let γ = (γΛ)Λ⊂⊂Zd denote a q-Lipschitz gradient specification which
is monotone over Ωq. Fix ∆ ⊂⊂ Zd, and consider a q-Lipschitz probability measure µ
on the product space (Ω2,F2), writing (φ1, φ2) for the random pair of height functions,
and with f := φ1 − φ2. Suppose that

µ = µ(γ∆ × γ∆) and µ-almost surely |fZdr∆| ≤ 2K.
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Fix a connected set Λ ⊂ ∆, and write E(n) for the event that there exists a sequence
of n nested a, b-moats of (f,Λ), where a = 4K and b ≥ 8K. Then

m2nµ(E(2n)) ≥ µ(fΛ ≥ 3bn) (3.5.5)

for all n ∈ N, where m = d1(Λ,Zd r ∆).

The idea of the proof is as follows. If f ≥ 3bn on Λ and f ≤ 2K on Zd r ∆, then
∆ must contain a climbing a, b-moat. Suppose now that we fix a subset M of ∆, and
condition on the event

A := {M is a climbing a, b-moat of (f,Λ)} ∈ F2
M̄ .

If we write Γ for the set ∆ r M̄ , then the conditioned measure µ(·|A) satisfies

µ(·|A) = µ(·|A)(γΓ × γΓ) and µ(·|A)-almost surely −2K ≤ fZdrΓ ≤ b+ 2K.

By the reflection principle, we thus have

µ(fΛ ≤ −3bn+ 2b+ 4K|A) ≥ µ(fΛ ≥ 3bn|A).

In other words, this means that it is as least as likely to observe the set M as a
climbing moat and a large negative deviation on Λ, than to see the setM as a climbing
moat and a slightly larger positive deviation on Λ. But if f is negative on Λ then
we can find a descending moat in the inside MΛ of M . One repeats this reflection
procedure to generate a full nested sequence of moats, while retaining a sufficiently
large probability. The formalism is slightly more convoluted because one needs to
choose the set M appropriately. This produces the extra factor m2n in (3.5.5).

Proof of Theorem 3.5.4. We proceed along the same spirit. Write ∆k := {Λ ⊂ ∆}k,
and define

A(M) := {M is a nested sequence of a, b-moats of (f,Λ)} ∈ F2
∪iM̄i

for M ∈ ∆k. We also write Γ(M) := ∆ r ∪iM̄i. Define µB := µ(· ∩ B) for any
B ∈ F2.

For any k ∈ N and M ∈ ∆k, we have

µA(M) = µA(M)(γΓ(M) × γΓ(M)) and µA(M)-a.e. −2K ≤ fZdrΓ(M) ≤ b+ 2K,

which means that the reflection principle applies to this measure. Claim that

µ(fΛ ≥ 3bn) ≤
∑

M∈∆1

µA(M)(fΛ ≥ 3bn) (3.5.6)

≤
∑

M∈∆1

µA(M)(fΛ ≤ −3bn+ 2b+ 4K) (3.5.7)

≤
∑

M∈∆2

µA(M)(fΛ ≤ −3bn+ 2b+ 4K) (3.5.8)

≤
∑

M∈∆2

µA(M)(fΛ ≥ 3bn− 2b− 8K) (3.5.9)

≤
∑

M∈∆2

µA(M)(fΛ ≥ 3b(n− 1)). (3.5.10)

Here (3.5.6) follows from the fact that ∆ contains a moat whenever f ≤ 2K on the
complement of ∆ and f ≥ 3bn on Λ, and (3.5.7) follows from the reflection principle
applied to each measure in the finite sum. Now isolate one set M ∈ ∆1 and consider
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the measure µA(M). If fΛ ≤ −3bn+2b+4K, then there must be a descending moat in
the inside ofM1—recall thatM1 is a climbing moat, by definition of a nested sequence
of moats. In particular, this proves (3.5.8). Inequality (3.5.9) follows again from the
reflection principle applied to each separate measure, and (3.5.10) follows from the
fact that 3bn − 2b − 8K ≥ 3b(n − 1). A continuation of this series of inequalities
leads to the equation

µ(fΛ ≥ 3bn) ≤
∑

M∈∆2n

µA(M)(fΛ ≥ 0).

The proof is nearly done. Note that µA(M)(Ω
2) = µA(M)(E(2n)) for M ∈ ∆2n by

definition of A(M) and E(2n), and therefore

µ(fΛ ≥ 3bn) ≤
∑

M∈∆2n

µA(M)(fΛ ≥ 0) ≤
∑

M∈∆2n

µA(M)(E(2n)).

To deduce (3.5.5), it suffices to demonstrate that, as measures,∑
M∈∆2n

µA(M) ≤ m2nµ.

The measure on the left equals Xµ, where X is the number of ways to choose a
nested sequence of 2n moats contained in ∆. Since ∆ contains at most m moats, we
have X ≤

(
m
2n

)
≤ m2n.

We state an immediate corollary, which is an adaptation of the previous result to
the case that ∆ and Λ are not connected.

Proposition 3.5.11. Assume the setting of the previous theorem, only suppose now
that ∆ and Λ each decompose into k connected components denoted by (∆i)i and
(Λi)i respectively with Λi ⊂ ∆i, and write E(n) for the event that each ∆i contains a
sequence of n nested a, b-moats of (f,Λi). Then (3.5.5) holds true once we replace m
by

m =

k∏
i=1

d1(Λi,Zd r ∆i).

3.6 Analysis of local Lipschitz constraints

This section contains several results on local Lipschitz constraints—most are deduced
directly from Definition 3.3.1. Fix, throughout this section, a local Lipschitz constraint
(A, q), and let R ∈ N denote a fixed constant such that d1(x, y) ≤ R for all {x, y} ∈ A.
For example, one can take (A, q) to be the local Lipschitz constraint of Ψ, and R its
range. These results are near-trivial for most commonly studied models; they require
some work in the generality of Definition 3.3.1.

Throughout this section, we adopt the following notation. If p = (pk)0≤k≤n is a
path through (Zd,A), then we write q(p) for

∑n
k=1 q(pk−1, pk). If q(p) = q(p0, pn),

then p is called an optimal path.
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3.6.1 Homogenisation of local Lipschitz constraints
The following lemma characterises Uq in terms of q. It also provides a relation between
the local Lipschitz constraint q and the map ‖ · ‖q that it generates. The proof is
similar to the proof in [54], although the formulation of the lemma is different.

Lemma 3.6.1. The set Uq is nonempty. Its closure Ūq can be written as the inter-
section of finitely many half-spaces. For each contributing half-space H, there exists a
path p = (pk)0≤k≤n through (Zd,A) with pn − p0 ∈ L such that

H = H(p) :=
{
u ∈ (Rd)∗ : u(pn − p0) ≤ q(p)

}
.

Moreover, there exists a constant C <∞ such that

‖y − x‖q − C ≤ q(x, y) ≤ ‖y − x‖q + C

for any x, y ∈ Zd.

Proof. Call some path p = (pk)0≤k≤n through (Zd,A) a cycle lift if the projection
of p onto Zd/L is a cycle. Since Zd/L is finite and (Zd,A) of bounded degree, there
exist only finitely many cycle lifts once we identify paths which differ by a shift by a
vector in L.

Claim that

{u ∈ (Rd)∗ : u|L is q-Lipschitz} = ∩p: p is a cycle liftH(p). (3.6.2)

It is clear that the left set is contained in the right set. Focus now on the other
containment. Fix a slope u in the set on the right. Suppose, for the sake of
contradiction, that u is not in the set on the left, that is, that u|L is not q-Lipschitz.
Then there is some vertex x ∈ L and a path p from 0 to x through (Zd,A) such that
u(x) > q(0, x) = q(p). But p decomposes into a finite collection of cycle lifts (pi)i. By
choice of u, we have u(x) ≤

∑
i q(p

i) = q(p), a contradiction. This proves the claim.
The set Uq equals the interior of the left and right in (3.6.2). Suppose that Uq is

empty. Select a minimal family of cycle lifts (pk)1≤k≤m such that the corresponding
intersection of interiors of half-spaces ∩kH̊(pk) is empty—by minimal we simply mean
that m is as small as possible. For each 1 ≤ k ≤ m, write xk ∈ L for the endpoint of
pk minus pk0. Then each vector xk is orthogonal to the affine hyperplane ∂H(pk). By
Helly’s theorem, we observe that m ≤ d+ 1. In fact, it is easy to see that, regardless
of the value of m, the set {xk : 1 ≤ k ≤ m} is linearly dependent, with any strict
subset linearly independent. It is a simple exercise in linear algebra to derive from
the fact that the intersection of half-spaces ∩kH̊(pk) is empty, that there is some
slope u which is contained in the complement of H̊(pk) for any k, and that there
exists a family of positive integers (ak)1≤k≤m ⊂ N such that

∑
k a

kxk = 0. Since
u(xk) ≥ q(0, xk) for each k by choice of u, we have∑

k
q(0, akxk) ≤

∑
k
akq(0, xk) ≤

∑
k
aku(xk) = u(

∑
k a

kxk) = 0.

However, the triangle inequality and the inequality q(x, y) + q(y, x) > 0 for x 6= y
from the definition of an admissible quasimetric imply that∑m

k=1
q(0, akxk) = q(0, a1x1) +

∑m

k=2
q(0, akxk)

≥ q(0, a1x1) + q(0,−a1x1) = q(0, a1x1) + q(a1x1, 0) > 0,
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a contradiction. This proves that Uq is nonempty.
Now let x, y ∈ Zd arbitrary, and let p denote an optimal path from x to y.

Then p decomposes into cycle lifts and at most |Zd/L| − 1 remaining edges. It is
straightforward to derive from this decomposition that the difference between q(x, y)
and ‖y − x‖q is bounded uniformly over the choice of x and y.

Let us also state the following result, which follows immediately from the definition
of ‖ · ‖q in terms of q.

Proposition 3.6.3. If f : D → R is ‖ · ‖q-Lipschitz for D ⊂ Rd, then f |D∩L is
q-Lipschitz. If furthermore q is integral, then bfc|D∩L is also q-Lipschitz.

3.6.2 General observations
First state the Kirszbraun theorem: this is an elementary result in the theory of
Lipschitz functions. It asserts that a Lipschitz function defined on part of the space
can be extended to a Lipschitz function on the entire space, with the same Lipschitz
constant.

Proposition 3.6.4 (Kirszbraun theorem). If Λ ⊂ Zd is nonempty and if φ : Λ→ R
is q-Lipschitz, then the function

φ∗ : Zd → R, x 7→ sup
y∈Λ

φ(y)− q(x, y)

is the unique smallest q-Lipschitz extension of φ to Zd. If φ and q are integral, then
so is φ∗. Suppose that ‖ · ‖ : Rd → R is any positive homogeneous function satisfying
the triangle inequality. If D ⊂ Rd is nonempty and if f : D → R is ‖ · ‖-Lipschitz,
then the function

f∗ : Rd → R, x 7→ sup
y∈D

f(y)− ‖y − x‖

is the unique smallest ‖ · ‖-Lipschitz extension of f to Rd.

Next, we discuss the derived local Lipschitz constraint qε for ε sufficiently small.
For example, if A is the edge set of the square lattice and q = Kd1 for K ∈ [0,∞),
then qε is well-defined for ε ∈ [0,K), and qε = (K − ε)d1 for such ε. For the more
general case, we use a technical construction to understand the derived local Lipschitz
constraint qε.

Proposition 3.6.5. There exist constants η > 0 and C < ∞ such that for any
0 ≤ ε ≤ η,

1. We have εd1/R ≤ q − qε ≤ Cεd1,

2. We have qε+ε′ = (qε)ε′ = (qε′)ε for any ε′ ≥ 0 with ε+ ε′ ≤ η,

3. For any ε′ ≥ 0 with ε+ 2ε′ ≤ η, if φ, ψ : Λ→ R are functions for some Λ ⊂ Zd
where φ is qε+2ε′-Lipschitz and ‖φ− ψ‖∞ ≤ ε′, then ψ is qε-Lipschitz.

Proof outline. Claim that there exists a uniform constant C <∞ such that n(p) ≤
Cd1(x, y) for any optimal path p from x to y, where n(p) denotes the length of that
path. To see that the claim is true, observe that Uq is nonempty and open, and
therefore there exists a constant α > 0 such that ‖x‖q + ‖ − x‖q ≥ α‖x‖1 for any
x ∈ Rd. Moreover, the difference between q(x, y) and ‖y − x‖q is bounded uniformly
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over x, y ∈ Zd (Lemma 3.6.1). It is straightforward to deduce the claim from these
two facts.

One now defines the map Xq : Zd × Zd → Z≥0 by

Xq(x, y) := max{n(p) : p is an optimal path from x to y}.

Then d1/R ≤ Xq ≤ Cd1 by the previous discussion. It is straightforward, but slightly
technical, to see that qε = q − εXq for ε sufficiently small. This implies the three
statements of the proposition.

Proposition 3.6.6. We have Uq = ∪ε>0Ūqε.

3.6.3 Approximation of continuous profiles

Recall that Λ−m(D) := (Zd ∩D) r ∂m(Zd ∩D) for any m ∈ Z≥0 and D ⊂ Rd.

Theorem 3.6.7. Consider ε > 0 sufficiently small so that qε is well-defined, and fix
C <∞. Then there is a constant m ∈ Z≥0 such that the following statement holds
true. Suppose given a collection (Di)i of disjoint subsets of Rd, and write D := ∪iDi.
Let f : D → R denote a ‖ · ‖q-Lipschitz function such that f(y)−f(x) ≤ ‖y−x‖qε for
x ∈ Di and y ∈ Dj with i 6= j. Define Λi := Λ−m(Di) and Λ := ∪iΛi. Let φ : Λ→ E
denote a function such that φΛi is q-Lipschitz for all i and with |φ− f |Λ| ≤ C. Then
φ is q-Lipschitz, and has a q-Lipschitz extension to Zd.

Proof. This follows from Lemma 3.6.1 and Proposition 3.6.5.

In the remainder of this section, we specialise to the case that (A, q) is the
local Lipschitz constraint associated to the strong interaction Ψ as described in
Subsection 3.3.4. The previous theorem is particularly useful in the case that the
function f is affine on each set Di, say with slope ui ∈ Uq. In that case, we want the
height function φ to approximate the slope ui on each set Λi. To this end we will
choose for each u ∈ Uq a canonical Lipschitz height function φu to represent that
slope u. This is the purpose of the following definition.

Definition 3.6.8. Consider some fixed slope u ∈ Uq. If E = Z, then write φu ∈ Ω
for the unique smallest q-Lipschitz extension of the function buc|L to Zd. If E = R,
then write φu ∈ Ω for the unique smallest qε-Lipschitz extension of u|L to Zd, where
ε is the largest positive real number such that u|L is qε-Lipschitz (subject to ε ≤ η,
where η is as in Proposition 3.6.5).

If E = Z, then q is integral, and therefore the smallest q-Lipschitz extension of
buc|L to Zd is also integer-valued. The rounding procedure in the discrete setting
makes that the gradient of φu is not L-invariant. In the continuous setting E = R
there is no rounding, and therefore the gradient of φu is L-invariant. Finally, we want
to remark that, in both the discrete and the continuous setting, there exists a constant
C <∞ such that |φu − u|Zd | ≤ C for any u ∈ Uq. This is due to Lemma 3.6.1. This
observation, combined with the previous theorem, implies the following result.

Theorem 3.6.9. Let C <∞ denote the smallest constant such that |φu−u|Zd |+1 ≤ C
for all u ∈ Uq. Consider ε > 0 so small that qε is well-defined. Then there exists
a constant m ∈ Z≥0 such that the following holds true. Suppose given a collection
(Di)i of disjoint subsets of Rd, and write D := ∪iDi, Λi := Λ−m(Di), and Λ := ∪iΛi.
Let f : D → R denote a ‖ · ‖qε-Lipschitz function which is affine with slope ui ∈ Ūqε
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whenever restricted to Di. Then there exists a q-Lipschitz function φ : Λ→ E which
satisfies |φ − f |Λ| ≤ C and ∇φ|Λi = ∇φui |Λi for all i. If E = R then we may
furthermore impose that φ is qε′-Lipschitz for fixed 0 < ε′ < ε (that m is allowed to
depend upon).

For this result, the notation ∇φ = ∇ψ means that the difference φ−ψ is constant.

3.7 The specific free energy

3.7.1 The attachment lemmas

The letter Φ denotes a potential in SL + WL throughout this section. For the
thermodynamical formalism, it is crucial that we are able to attach height functions
defined on disjoint subsets of Zd without losing or gaining too much energy. More
precisely, if Λ1,Λ2 ⊂⊂ Zd are disjoint with Λ := Λ1∪Λ2, then we want to find bounds
on the difference between H0

Λ(φ) and H0
Λ1

(φ) + H0
Λ2

(φ). Similarly, we will require
bounds on the difference between H0

Λ(φ) and HΛ(φ). In this section, we present
simple tools for doing this: the attachment lemmas. We first state and prove the
lower attachment lemma, which is easier.

Lemma 3.7.1 (Lower attachment lemma). Let Λ1,Λ2 ⊂⊂ Zd disjoint, and write
Λ := Λ1 ∪ Λ2. Then

H0
Λ ≥ H0

Λ1
+H0

Λ2
− min
i∈{1,2}

e−(Λi),

where e− is the lower exterior bound of Ξ. We also have HΛ ≥ H0
Λ − e−(Λ) for any

Λ ⊂⊂ Zd.

Proof. The inequality H0,Ψ
Λ ≥ H0,Ψ

Λ1
+ H0,Ψ

Λ2
is obvious because Ψ is positive. The

inequality H0,Ξ
Λ ≥ H0,Ξ

Λ1
+H0,Ξ

Λ2
−mini∈{1,2} e

−(Λi) is immediate from the definition
of e− in terms of Ξ. This proves the inequality in the display. The other inequality
follows from a similar decomposition.

More care is required for the upper bound. There is a difference between the
discrete case E = Z and the continuous case E = R. If E = Z then the strong
interaction Ψ can be described by finite information. The effect of this is that there
exists a uniform bound C <∞ such that

HΨ
{x}(φ) ≤ C (3.7.2)

for any x ∈ Zd and any q-Lipschitz function φ ∈ Ω. If E = R then there exists no
such a priori bound, and it is this specific reason reason that we introduce the locally
bounded property in Subsection 3.3.2, so that at least

HΨ
{x}(φ) ≤ Cε (3.7.3)

whenever φ is qε-Lipschitz at x.
For the upper bound, one requires control especially over the potential Ψ which

enforces the Lipschitz constraint. The height function φ must therefore be sufficiently
well-behaved for the lemma to work, at least on the boundary where Λ1 meets Λ2.
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Lemma 3.7.4 (Upper attachment lemma). Let φ ∈ Ω and Λ1,Λ2 ⊂⊂ Zd disjoint,
and write Λ := Λ1 ∪ Λ2. If E = Z, then there exists an amenable function e+,
dependent only on Φ, such that

H0
Λ(φ) ≤ H0

Λ1
(φ) +H0

Λ2
(φ) + min

i∈{1,2}
e+(Λi) (3.7.5)

whenever φ∂RΛ1∪∂RΛ2
is q-Lipschitz, and such that

HΛ(φ) ≤ H0
Λ(φ) + e+(Λ) (3.7.6)

whenever φ∂RΛ∪∂R(ZdrΛ) is q-Lipschitz. If E = R and ε > 0, then there exists an
amenable function e+

ε , dependent only on Φ and ε, such that (3.7.5) and (3.7.6) hold
true whenever the restrictions of φ are qε-Lipschitz, and with e+ replaced by e+

ε .

Definition 3.7.7. The functions e+ and e+
ε are called upper exterior bounds.

Proof of Lemma 3.7.4. It suffices to consider the contributions of the potentials Ψ
and Ξ to each Hamiltonian separately; one can simply sum the two upper exterior
bounds e+,Ψ and e+,Ξ so obtained. In fact, the upper exterior bound e+,Ξ := e−

suffices for the long-range interaction Ξ. Let us therefore focus on the contribution
from the potential Ψ.

We shall simultaneously consider the discrete case and the continuous case. In
this proof we shall reserve the name Lipschitz for q-Lipschitz whenever E = Z and for
qε-Lipschitz whenever E = R. Write C for a fixed constant such that HΨ

{x}(ψ) ≤ C
for any x ∈ Zd and for any Lipschitz height function ψ. Because Ψ is positive and of
range R and because the restriction of φ to ∂RΛ1 ∪ ∂RΛ2 is Lipschitz, we have

H0,Ψ
Λ (φ)−H0,Ψ

Λ1
(φ)−H0,Ψ

Λ2
(φ) =

∑
∆⊂Λ,∆ 6⊂Λ1,∆ 6⊂Λ2

Ψ∆(φ)

=
∑

∆⊂∂RΛ1∪∂RΛ2,∆ 6⊂Λ1,∆ 6⊂Λ2

Ψ∆(φ) ≤ min
i∈{1,2}

HΨ
∂RΛi,∂RΛ1∪∂RΛ2

(φ)

≤ min
i∈{1,2}

C|∂RΛi| ≤ min
i∈{1,2}

e+,Ψ(Λi)

if we define e+,Ψ(Λ) := C(2R+ 1)d|∂Λ|; this function satisfies the desired constraints.
It is clear that this choice for e+,Ψ also implies that

HΨ
Λ (φ) ≤ H0,Ψ

Λ (φ) + e+,Ψ(Λ)

whenever the restriction of φ to ∂RΛ ∪ ∂R(Zd r Λ) is Lipschitz.

3.7.2 Density limits of functions on finite subsets of Zd

Proposition 3.7.8. Consider two L-invariant real-valued functions f and b on the
finite subsets of Zd, with b amenable and

f(Λ1 ∪ Λ2) ≤ f(Λ1) + f(Λ2) + min
i∈{1,2}

b(Λi) (3.7.9)

for disjoint Λ1,Λ2 ⊂⊂ Zd. Then (n−df(Πn))n∈N tends to a limit in [−∞,∞) as
n→∞, and

lim
n→∞

n−df(Πn) = inf
n∈N ·N

n−d(f(Πn) + b(Πn))
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where N ∈ N is minimal subject to N · Zd ⊂ L. Finally, if (Λn)n∈N ↑ Zd, then

lim sup
n→∞

|Λn|−1f(Λn) ≤ lim
n→∞

n−df(Πn).

If we weaken the assumptions, and suppose only that (3.7.9) holds true whenever
Λ1 contains some vertex x adjacent to some vertex y in Λ2, then each statement in
this proposition remains valid, except that, for the final assertion, we also require that
each set Λn is connected.

Definition 3.7.10. Write 〈·|Φ〉 : PL(Ω,F∇)→ [−‖Ξ‖,∞] for the unique functional
which satisfies

〈µ|Φ〉 := µ(Φ) := lim
n→∞

n−dµ(H0
Πn).

The limit on the right converges due to the lower attachment lemma and the previous
proposition. This quantity is called the specific energy of µ with respect to Φ.

3.7.3 Free energy attachment lemma
Definition 3.7.11. Define e∗ := e− + log(2K + 1), where K is minimal subject to
Kd1 ≥ q. Call the amenable function e∗ the free energy exterior bound.

Lemma 3.7.12 (Free energy attachment lemma). Fix µ ∈ P(Ω,F∇), and consider
some disjoint sets Λ1,Λ2 ⊂⊂ Zd with some vertex x of Λ1 adjacent to some vertex y
of Λ2 in the square lattice. Write Λ := Λ1 ∪ Λ2. Then

HΛ(µ|Φ) ≥ HΛ1(µ|Φ) +HΛ2(µ|Φ)− min
i∈{1,2}

e∗(Λi).

Moreover, for Λ ⊂⊂ Zd connected and nonempty, we have

HΛ(µ|Φ) ≥ −(|Λ| − 1) max
x∈Zd/L

e∗({x}).

Proof. Fix K minimal subject to Kd1 ≥ q. Recall that µπΛ is the restriction of µ to
Λ. We assume that µπΛ is supported on Kd1-Lipschitz functions; if this is not the
case, then HΛ(µ|Φ) is infinite, and we are done. For any ∆ ⊂ Λ, we have

H∆(µ|Φ) = HF∇∆ (µ|λ∆−1) + µ(H0
∆).

Observe that µ(H0
Λ) ≥ µ(H0

Λ1
) + µ(H0

Λ2
)−mini∈{1,2} e

−(Λi) due to the lower attach-
ment lemma. Therefore it suffices to show that

HF∇Λ (µ|λΛ−1) ≥ HF∇Λ1

(µ|λΛ1−1) +HF∇Λ2

(µ|λΛ2−1)− log(2K + 1) (3.7.13)

whenever µπΛ is supported onKd1-Lipschitz functions. This follows from the following
two facts:

1. We have HF∇{x,y}(µ|λ
{x,y}−1) ≥ − log(2K + 1),

2. If ∆1,∆2 ⊂ Λ share a single vertex z and ∆ := ∆1 ∪∆2, then

HF∇∆ (µ|λ∆−1) ≥ HF∇∆1

(µ|λ∆1−1) +HF∇∆2

(µ|λ∆2−1).
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Note that (3.7.13) then follows by applying the second fact twice, first to the sets Λ1

and {x, y}, then to the sets Λ1 ∪ {y} and Λ2. Let us first prove the first fact. Since µ
is supported on Kd1-Lipschitz functions, we have

HF∇{x,y}(µ|λ
{x,y}−1) ≥ − log λ{x,y}−1({|φ(y)− φ(x)| ≤ K}) ≥ − log(2K + 1).

For the second fact, we can simply choose the point z as a reference point for all
gradient measures, such that the measurable space (Ω,F∇∆ ) becomes effectively a
product space; the measure λ∆−1 is then the product measure of λ∆1−1 and λ∆2−1.
The second fact now follows; the inequality in the display is well-known for product
spaces.

The final assertion of the lemma is a direct consequence of the first assertion and
the fact that HΛ(µ|Φ) = 0 whenever Λ is a singleton.

3.7.4 Convergence and properties of the specific free energy
The two results in this subsection jointly imply Theorem 3.4.1.

Theorem 3.7.14. If Φ ∈ SL +WL, then the functional H(·|Φ) : PL(Ω,F∇) →
R ∪ {∞} is well-defined and satisfies

H(µ|Φ) := lim
n→∞

n−dHΠn(µ|Φ)

= sup
n∈N ·N

n−d (HΠn(µ|Φ)− e∗(Πn)) ≥ − max
x∈Zd/L

e∗({x}),

where N is minimal subject to N ·Zd ⊂ L. Moreover, H(·|Φ) is lower-semicontinuous,
and for each C ∈ R the lower level set

MC := {µ ∈ PL(Ω,F∇) : H(µ|Φ) ≤ C}

is a compact Polish space, with respect to the topology of (weak) local convergence. In
fact, the two topologies coincide on each set MC .

Proof. The statements in the first display follow from Lemma 3.7.12 and Proposi-
tion 3.7.8. For the remainder of the theorem, observe that

MC = PL(Ω,F∇) ∩
⋂

n∈N ·N
{µ ∈ P(Ω,F∇) : HΠn(µ|Φ) ≤ ndC + e∗(Πn)}.

Each of these sets is closed (in the topology of weak local convergence), and therefore
MC is closed; the functional H(·|Φ) must be lower-semicontinuous (in either topology).
Moreover, for each n ∈ N · N, the set

{µ ∈ P(Ω,F∇Πn) : HΠn(µ|Φ) ≤ ndC + e∗(Πn)}

is a compact Polish space with respect to both the weak and strong topologies, which
coincide on this set. Write δn for the corresponding metric. Then MC is a compact
Polish space with metric δ(µ, ν) :=

∑
n∈N ·N e

−n(δn(µ, ν) ∧ 1).

Theorem 3.7.15. If Φ ∈ SL+WL, then the functional H(·|Φ) is affine, in the sense
that

H((1− t)µ+ tν|Φ) = (1− t)H(µ|Φ) + tH(ν|Φ)

for µ, ν ∈ PL(Ω,F∇) and 0 ≤ t ≤ 1.

Proof. It follows from a direct entropy calculation that for fixed Λ ⊂⊂ Zd,

0 ≤ (1− t)HΛ(µ|Φ) + tHΛ(ν|Φ)−HΛ((1− t)µ+ tν|Φ) ≤ 2 log 2.

This error term vanishes in the normalisation of the specific free energy.
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3.7.5 The surface tension

Recall that the surface tension σ : (Rd)∗ → R ∪ {∞} is defined by

σ(u) := inf
µ ∈ PL(Ω,F∇) with S(µ) = u

H(µ|Φ).

The function σ must be convex because both S(·) and H(·|Φ) are affine. It is also
bounded from below because H(·|Φ) is bounded from below by −maxx∈Zd/L e

∗({x}).
Recall that UΦ is defined to be the interior of the set {σ <∞} ⊂ (Rd)∗. The set UΦ

is convex, and σ is continuous on UΦ. Moreover, σ must equal ∞ on the complement
of the closure of UΦ. Recall the statement of Theorem 3.4.13, for which we now
provide a proof.

Proof of Theorem 3.4.13. Observe that σ is lower-semicontinuous, because S(·) is
continuous and because H(·|Φ) is lower-semicontinuous with compact lower level sets.

Let us first prove that UΦ ⊂ Uq. Suppose that the slope u := S(µ) of µ ∈
PL(Ω,F∇) is not in Ūq. It suffices to demonstrate that H(µ|Φ) =∞. Since u 6∈ Ūq,
we know that u|L is not q-Lipschitz, and therefore with positive µ-probability, φ|L is
not q-Lipschitz. In particular, this means that µ(H0

Πn
) =∞ for n sufficiently large.

This proves that H(µ|Φ) =∞.
For the remainder of the proof, we distinguish between the discrete and the

continuous setting. Consider first the case that E = Z. For the lemma, it suffices to
demonstrate that σ is bounded on Uq. If µ ∈ PL(Ω,F∇) is supported on q-Lipschitz
functions, then

HΠn(µ|Φ) = µ(H0
Πn) +HF∇Πn (µ|λΠn−1) ≤ Cnd where C := max

x∈Zd/L
e+({x});

the energy term is bounded by Cnd because φ is q-Lipschitz µ-almost surely, and
the entropy term is nonpositive because λΠn−1 is a counting measure. In particular,
H(µ|Φ) ≤ C. Fix u ∈ Uq, and consider a subsequential limit µ of the sequence

µn :=
1

|Πn ∩ L|
∑

x∈Πn∩L
δθxφu .

This limit µ is clearly supported on q-Lipschitz functions and is automatically shift-
invariant and satisfies S(µ) = u; in particular, σ(u) ≤ C <∞. This proves that σ is
bounded by C on Uq.

Consider now the continuous case E = R. For the lemma, we must show that σ
is finite on Uq, and infinite on ∂Uq. Fix u ∈ Uq. Then φu is q3ε-Lipschitz for ε > 0
sufficiently small. Let X = (Xx)x∈Zd denote an i.i.d. family of random variables which
are uniformly random in the interval [0, ε]. Write µ ∈ PL(Ω,F∇) for the measure in
which φ has the distribution of φu +X. Then φ is qε-Lipschitz almost surely. It is
straightforward to see that

HΠn(µ|Φ) = µ(H0
Πn) +HF∇Πn (µ|λΠn−1) ≤ (C − log ε)nd where C := max

x∈Zd/L
e+
ε ({x});

in particular, H(µ|Φ) ≤ C − log ε <∞. Clearly S(µ) = u, and so σ(u) <∞. Finally,
consider u ∈ ∂Uq. Suppose that µ ∈ PL(Ω,F∇) has slope u. Then at least one of
the following two must hold true:

1. φ is not q-Lipschitz, with positive µ-probability,
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2. φ(y)− φ(x) is deterministic in µ for some distinct vertices x and y.

This follows from Lemma 3.6.1 which gives a characterisation of Uq. In the former
case we have H(µ|Φ) =∞ as was shown at the beginning of this proof. In the latter
case, we observe that

HF∇Πn (µ|λΠn−1) =∞

for n sufficiently large, because µπΠn is not absolutely continuous with respect to
λΠn−1. This also implies that H(µ|Φ) = ∞. We have now shown that σ = ∞ on
∂Uq.

3.8 Minimisers of the specific free energy

Recall that a minimiser is a shift-invariant measure µ ∈ PL(Ω,F∇) which satisfies

H(µ|Φ) = σ(S(µ)) <∞,

and recall the discussion of minimisers in Subsection 3.4.1, in particular Definition 3.4.3.
The purpose of this section is to prove the following theorem, which provides us with
several properties of minimisers, and is equivalent to the conjunction of Theorem 3.4.2
and Theorem 3.4.4.

Theorem 3.8.1. Let Φ ∈ SL +WL, and consider a minimiser µ ∈ PL(Ω,F∇). Fix
Λ ⊂⊂ Zd, and write µφ for the regular conditional probability distribution of µ on
(Ω,F) corresponding to the projection map Ω → EZdrΛ. Then for µ-almost every
φ ∈ Ω, we have µφπΛ ∈ AΛ,φ. In particular, if µ(Ωγ) = 1, then µ is an almost Gibbs
measure. In general, the former implies that µ has finite energy, in the sense that

1Ωq(µπZdrΛ × λΛ)� µ,

where Ωq is the set of q-Lipschitz height functions.

We first introduce the definition of the max-entropy, which is due to Datta [8].

Definition 3.8.2. Let (X,X ) denote a measurable space, endowed with some finite
measures µ and ν. Then the max-entropy of µ with respect to ν is defined by

H∞(µ|ν) := log inf{λ ≥ 0 : µ ≤ λν} =

{
ess sup log f if µ� ν where f = dµ/dν,
∞ otherwise.

The max-diameter of a non-empty set A of finite measures on (X,X ) is defined by

Diam∞A := sup
µ,ν∈A

H∞(µ|ν).

If Diam∞A <∞, then all measures in A are absolutely continuous with respect to
one another, with uniform lower and upper bounds on the Radon-Nikodym derivatives.

Proposition 3.8.3. Suppose that Λ ⊂ ∆ ⊂⊂ Zd with Λ ⊂ ∆−R. Then we have
Diam∞ C(AΛ,∆,φ) ≤ 4e−(Λ) <∞. In particular, Diam∞AΛ,φ ≤ 4e−(Λ) <∞.
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Proof. Claim first that Diam∞AΛ,∆,φ ≤ 4e−(Λ). Consider two random fields ν1, ν2 ∈
P(Ω,F) with ν1π∆ = ν2π∆ = δφ∆

. Then

νiγΛπΛ =

∫
1

ZΛ(ψ)
e−H(·,ψZdrΛ

)λΛdνi(ψ).

But since ψ∆ = φ∆ almost surely in both ν1 and ν2, the dependence of H(·, ψZdr∆)
on ψ is bounded by e−(Λ). This error term appears twice in each measure νiγΛπΛ;
directly in the Hamiltonian, and indirectly in the normalisation constant. Thus,
in calculating the Radon-Nikodym derivative between the two measures, the term
appears four times. This proves the claim. By Lemma 2.5.1 in Chapter 2, this also
implies that Diam∞ C(AΛ,∆,φ) ≤ 4e−(Λ).

We also need the following lemma, which is an adaptation of an intermediate
result in Chapter 2 to the gradient setting.

Lemma 3.8.4. Fix µ ∈ P(Ω,F∇), and define, for Λ ( ∆ ⊂⊂ Zd,

Kµ(Λ,∆) := inf
ν ∈ P(Ω,F∇) with νπ∆ = µπ∆

HF∇∆ (µ|νγΛ) ≥ 0.

Then Kµ(·, ·) is superadditive in the first argument, and increasing in the second
argument.

Proof. It is straightforward to see that Kµ(Λ,∆) is increasing in ∆: increasing ∆
restricts the set of measures ν for the infimum, while increasing the σ-algebra F∇∆ for
the entropy. Both operations increase the value of Kµ(Λ,∆). For superadditivity in
Λ, it suffices to prove that

inf
ν ∈ P(Ω,F∇) with νπ∆ = µπ∆

HF∇∆ (µ|νγΛ)

≥
∑

i∈{1,2}

inf
ν ∈ P(Ω,F∇) with νπ∆ = µπ∆

HF∇∆ (µ|νγΛi)

for Λ1 and Λ2 disjoint with Λ := Λ1 ∪ Λ2 ( ∆. This follows from Lemma 2.4.1 in
Chapter 2. Observe that that lemma does not concern the gradient setting, which
provides us with a slight complication. However, since we choose Λ to be a strict
subset of ∆, we can fix a vertex x ∈ ∆ r Λ to serve as a reference vertex for the
gradient setting for all three entropy calculations in the display, thus translating the
inequality to the non-gradient setting.

Lemma 3.8.5. If µ is a minimiser, then Kµ ≡ 0.

Proof. Fix µ ∈ PL(Ω,F∇). Then Kµ is shift-invariant, in the sense that Kµ(Λ,∆) =
Kµ(θΛ, θ∆) for Λ ( ∆ ⊂⊂ Zd and θ ∈ Θ. Using also the properties of Kµ in the
previous defining lemma, it is immediate that Kµ ≡ 0 if and only if Kµ(Π−Rn ,Πn) =
o(nd) as n→∞. Moreover, by definition of Kµ, it is immediate that

Kµ(Π−Rn ,Πn) ≤ HF∇Πn (µ|µγΠ−Rn
).

We must therefore prove that H(µ|Φ) = σ(S(µ)) <∞ implies that the expression on
the right in this display is of order o(nd) as n→∞. If this expression is not of order
o(nd), then there is an n ∈ N and an ε > 0 such that

HF∇Πn (µ|µγΠ−Rn
) ≥ 2e−(Πn) + ε. (3.8.6)
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We will use this inequality to construct another L-invariant measure µ′′ of the
same slope as µ and with a strictly smaller specific free energy. This proves that
H(µ|Φ) 6= σ(S(µ)).

For Λ ⊂⊂ Zd, we denote by γ∗Λ the kernel γΛ−R , only now with respect to
the partial Hamiltonian HΛ−R,Λ rather than the full Hamiltonian HΛ−R . With a
straightforward entropy calculation one can demonstrate that

HΛ(νγ∗Πn |Φ) ≤ HΛ(ν|Φ)− ε

for any Λ ⊂⊂ Zd containing Πn, and for any ν ∈ P(Ω,F∇) with νπΠn = µπΠn . This
can be done by calculating each free energy term first over the σ-algebra generated by
the vertices in Λ r Π−Rn , then over the remaining vertices. The first term is the same
for νγ∗Πn and ν since the kernel modifies the values of φ in Π−Rn only; the difference
between the two measures for the second term is at least ε due to (3.8.6) and because

|HΠ−Rn ,Λ −HΠ−Rn ,Πn
| ≤ e−(Πn).

If Λ and ∆ are disjoint, then clearly γ∗Λ and γ∗∆ commute. Let M denote the
smallest multiple of N which exceeds n, and write

µ′ := µ
∏

x∈M ·Zd
γ∗Πn+x;

this measure is M ·Zd-invariant, but not necessarily L-invariant. By the inequality in
the previous paragraph, we have HΠkM (µ′|Φ) ≤ HΠkM (µ|Φ)− kdε for any k ∈ N. As
M · Zd-invariant measures, we have S(µ′) = S(µ) and H(µ′|Φ) ≤ H(µ|Φ)− ε/Md <
H(µ|Φ). To make µ′ also L-invariant, simply define

µ′′ :=
1

|L/(M · Zd)|
∑

x∈L/(M ·Zd)

θxµ
′.

The averaging procedure does not change the slope or the specific free energy. This
is the desired measure.

Proof of Theorem 3.8.1. The theorem contains three claims. The second claim follows
directly from the first claim and the definition of an almost Gibbs measure. We shall
quickly demonstrate that the third claim also follows from the first claim, before
focusing on that first claim. Assume that the first claim holds true. Observe first
that, by assumption, for µ-almost every φ,

1Ωq(δφZdrΛ
× λΛ)πΛ � γΛ(·, φ)πΛ ∈ AΛ,φ 3 µφπΛ.

But all measures in AΛ,φ are absolutely continuous with respect to one another, by
Proposition 3.8.3 and the comment preceding it. Therefore

1Ωq(δφZdrΛ
× λΛ)� µφ

for µ-almost every φ, which implies that 1Ωq(µπZdrΛ × λΛ)� µ.
Focus finally on the first claim. By the previous lemma, it suffices to prove that

Kµ ≡ 0 implies that µφπΛ ∈ AΛ,φ for µ-almost every φ. The proof is nearly identical
to the proof of Lemma 2.5.7 in Chapter 2. Fix ∆ ⊂⊂ Zd with Λ ⊂ ∆−R; it suffices
to demonstrate that Kµ ≡ 0 implies that µφπΛ ∈ C(AΛ,∆,φ) for µ-almost every φ.
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By choice of ∆, we have Diam∞ C(AΛ,∆,φ) <∞. Write ∆n for {−n, . . . , n}d ⊂⊂ Zd,
and write µφn for the regular conditional probability distribution of µ on (Ω,F)
corresponding to the projection map Ω→ E∆nrΛ. We only consider n ∈ N so large
that Λ ⊂ ∆ ⊂ ∆n. As in the proof of Lemma 2.5.7 in Chapter 2, we observe that
Kµ(Λ,∆n) = 0 implies that for µ-almost every φ,

1. µφnπΛ ∈ C(AΛ,∆n,φ) ⊂ C(AΛ,∆,φ) for fixed n—this follows from Lemma 2.5.1 in
Chapter 2,

2. µφn(A) → µφ(A) for fixed A ∈ FΛ, by the bounded martingale convergence
theorem,

3. µφnπΛ → µφπΛ ∈ C(AΛ,∆,φ) by compactness of C(AΛ,∆,φ) in the strong topology.

Compactness of C(AΛ,∆,φ) follows from Lemma 2.5.1 in Chapter 2 and the fact that
AΛ,∆,φ has finite max-diameter.

3.9 Ergodic decomposition of shift-invariant measures
In this section we cite some standard results on ergodic decompositions of shift-
invariant random fields from the work of Georgii [20]. Recall that I∇L is the σ-algebra
of shift-invariant gradient events, and that exPL(Ω,F∇) is the set of ergodic gradient
measures, endowed with the σ-algebra e(exPL(Ω,F∇)).

The following result is a direct adaptation of Theorem 14.10 in [20] to the gradient
setting of this chapter. Informally, the theorem asserts that if µ is a shift-invariant
gradient random field, then the regular conditional probability distribution of µ given
the information in I∇L is well-defined.

Theorem 3.9.1. There is a unique affine bijection

w : PL(Ω,F∇)→ P(exPL(Ω,F∇), e(exPL(Ω,F∇))), µ 7→ wµ

such that
µ =

∫
νdwµ(ν)

for all µ ∈ PL(Ω,F∇). For any A ∈ F∇ and c ∈ R, this bijection satisfies

wµ(ν(A) ≤ c) = µ(µ(A|I∇L ) ≤ c).

Definition 3.9.2. The measure wµ is called the ergodic decomposition of µ.

Proof of Theorem 3.9.1. Let (e1, . . . , ed) denote the standard basis of Rd. The mea-
sure µ can be considered a non-gradient measure, by associating to each vertex x ∈ Zd
the tuple (φ(x+e1)−φ(x), . . . , φ(x+ed)−φ(x)) ∈ Ed. Theorem 14.10 in [20] applies
to this non-gradient measure, which immediately implies the current theorem.

It was shown in previous sections that the slope and specific free energy are affine.
In fact, these functionals are also strongly affine. This is the subject of the following
two results.

Proposition 3.9.3. The functional S is strongly affine, that is,

S(µ) =

∫
S(ν)dwµ(ν)

for any µ ∈ PL(Ω,F∇) with finite slope.
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This proposition is immediate from the definition of S.

Theorem 3.9.4. If Φ ∈ SL +WL, then the functional H(·|Φ) is strongly affine, that
is,

H(µ|Φ) =

∫
H(ν|Φ)dwµ(ν) (3.9.5)

for any µ ∈ PL(Ω,F∇).

Proof. If µ is not supported on q-Lipschitz functions, then the left and right of (3.9.5)
equal ∞; recall that H(·|Φ) is bounded below by Theorem 3.4.1 so that the integral
on the right in (3.9.5) is always well-defined.

Consider now the case that µ is supported on q-Lipschitz functions, which means
in particular that µ is K-Lipschitz for K minimal subject to Kd1 ≥ q. In that case
we have

H(µ|Φ) = 〈µ|Φ〉+ lim
n→∞

n−dHF∇Πn (µ|λΠn−1), (3.9.6)

once it is established that the sequence on the right tends to some limit in (−∞,∞].
The functional 〈·|Φ〉 is clearly strongly affine on PL(Ω,F∇). Let us therefore focus on
the limit on the right in the display. It suffices to demonstrate that the second limit
in the display is well-defined, bounded below, and strongly affine in its dependence
on µ, once restricted to K-Lipschitz measures. The idea is to use Theorem 15.20
in [20], which concerns the non-gradient setting. The measure µ can be made into
a shift-invariant, non-gradient measure by considering the values of φ modulo 4K.
It is clear that the gradient of φ can be reconstructed from this reduced height
function, if we use the extra information that φ is K-Lipschitz. This is formalised as
follows. Write Ê for the set E/4KZ, and endow it with the Borel σ-algebra Ê and
the Lebesgue measure λ̂ which satisfies λ̂(Ê) = 4K. Write Ω̂ for the set of functions
from Zd to Ê, and F̂ for the product σ-algebra on Ω. Define the measure µ̂ on (Ω̂, F̂)
as follows: first sample a pair (φ, a) from µ × (λ̂/4K), the final sample φ̂ is then
obtained by setting φ̂(x) = φ(x)−φ(0) +a ∈ Ê. The measure µ̂ is clearly L-invariant.
Note that, for Λ ⊂⊂ Zd nonempty,

HF∇Λ (µ|λΛ−1) = HF̂Λ
(µ̂|λ̂Λ) + log 4K,

where F̂Λ := σ(φ̂(x) : x ∈ Λ). By Theorem 15.20 in [20], the limit

lim
n→∞

n−dHF∇Πn (µ|λΠn−1) = lim
n→∞

n−dHF̂Πn
(µ̂|λ̂Πn)

is well-defined, bounded below by − log 4K, and strongly affine over µ.

Definition 3.9.7. For µ ∈ PL(Ω,F∇) a K-Lipschitz measure, define

H(µ|λ) := lim
n→∞

n−dHF∇Πn (µ|λΠn−1) ∈ [− log 4K,∞],

the specific entropy of µ. This quantity is well-defined and strongly affine over µ due
to the proof of the previous theorem. Remark that H(µ|λ) ≤ 0 whenever E = Z.

Lemma 3.9.8. Consider a potential Φ ∈ SL+WL and a measure µ ∈ PL(Ω,F∇). Fix
K minimal subject to Kd1 ≥ q. If µ is not K-Lipschitz, then H(µ|Φ) = 〈µ|Φ〉 =∞,
and if µ is K-Lipschitz, then H(µ|Φ) = 〈µ|Φ〉+H(µ|λ).

Proof. This also follows from the proof of the previous theorem.
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We are now able to prove Theorem 3.4.5.

Proof of Theorem 3.4.5. Suppose that u ∈ ŪΦ is an exposed point of σ. By compact-
ness of the lower level sets of H(·|Φ) (Theorem 3.4.1) and by continuity of S(·), there
exists a minimiser µ ∈ PL(Ω,F∇) of slope u. Write wµ for the ergodic decomposition
of µ. Since both S(·) and H(·|Φ) are strongly affine (due to Proposition 3.9.3 and
Theorem 3.9.4) and because u is an exposed point, we observe that wµ-almost every
component ν is an ergodic minimiser of slope u.

3.10 Limit equalities
This section provides the fundamental building blocks for the large deviations principle
in the next section. The motivating thesis for this section is that σ(u) can be
approximated by integrals of exp−H0

Πn
after restricting to height functions which

are close to the slope u on ∂RΠn. It is possible to be more subtle: if one considers a
measure µ ∈ PL(Ω,F) with H(µ|Φ) <∞ and S(µ) ∈ UΦ, then one can approximate
H(µ|Φ) by integrals of exp−H0

Πn
after restricting to height functions which are

close to the slope S(µ) on ∂RΠn, and after restricting further to height functions
φ whose empirical measure in Πn approximates µ. The empirical measure of φ in
Πn is obtained by randomly shifting φ by a vertex in L ∩Πn. Analogous results for
finite-range non-Lipschitz potentials can be found in Chapter 6 in [54]. However, the
proof presented here differs from the proof in [54] to account for the generality of our
setting, and the specificity of the discrete Lipschitz case.

3.10.1 Formal statement
Let us first introduce some simple notation for fixing boundary conditions.

Definition 3.10.1. Write 0Λ for the smallest element in Λ in the dictionary order
on Zd whenever Λ ⊂⊂ Zd. Let u ∈ UΦ. If E = Z, then write CuΛ for the set of height
functions

{φ ∈ Ω : φ∂RΛ − φ(0Λ) = φu∂RΛ − φ
u(0Λ)} ∈ F∇∂RΛ.

Now consider E = R, and fix ε > 0. Write CuΛ,ε for the set

{φ ∈ Ω : |(φ∂RΛ − φ(0Λ))− (φu∂RΛ − φ
u(0Λ))| ≤ ε} ∈ F∇∂RΛ.

Abbreviate CuΠn and CuΠn,ε to C
u
n and Cun,ε respectively.

Next, we formally define the empirical measure of a height function φ in Λ. Recall
the definition of the basis B of the topology of weak local convergence on P(Ω,F∇)
from Subsection 3.2.1.

Definition 3.10.2. In this definition, we adopt the following notation: if φ is a
height function and Λ ⊂⊂ Zd, then write φ̄Λ for unique extension of φΛ to Zd which
equals φ(0Λ) on the complement of Λ. For Λ ⊂⊂ Zd and φ ∈ Ω, we define the measure
LΛ(φ) by

LΛ(φ) :=
1

|L ∩ Λ|
∑

x∈L∩Λ

δθxφ̄Λ
.

This is called the empirical measure of φ in Λ. The kernel LΛ is thus a probability
kernel from (Ω,FΛ) to (Ω,F) which restricts to a kernel from (Ω,F∇Λ ) to (Ω,F∇).
Now consider B ∈ B. Write BΛ for the event BΛ := {φ ∈ Ω : LΛ(φ) ∈ B}; this event
is F∇Λ -measurable. We shall also write Ln and Bn for LΠn and BΠn respectively.
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We start with the introduction of free boundary limits, which is slightly easier
than the definition of pinned boundary limits. For free boundary limits, we integrate
over all height functions having the appropriate empirical measure, irrespective of
boundary conditions. It will be useful to define free boundary limits also for measures
µ ∈ P(Ω,F∇) which are not shift-invariant.

Definition 3.10.3. Let Λ ⊂⊂ Zd and B ∈ B. The free boundary estimate of B over
Λ is given by

FBΛ(B) := − log

∫
BΛ

e−H
0
ΛdλΛ−1.

Let µ ∈ P(Ω,F∇). The free boundary limits of B and µ respectively are given by

FB(B) := lim inf
n→∞

n−d FBΠn(B) and FB(µ) := sup
A ∈ B with µ ∈ A

FB(A).

Free boundary limits should be thought of as an asymptotic upper bound on the
integral in the display, and this is why we take the limit inferior in the definition
of FB(B)—taking into account the minus sign which appears in the definition of
FBΛ(B). Indeed, the free boundary estimates are useful in proving the upper bound
on probabilities in the large deviations principle in the next section. Remark that it
is immediate from the definition of FB(µ) that FB(·) is lower-semicontinuous on the
set of gradient measures in the topology of weak local convergence for which B forms
a basis.

Finally, we introduce pinned boundary limits, which take into consideration also
the value of φ on the boundary of Πn. In this case, it is the lower bound on the
integral of interest that matters to us; pinned boundary limits play a crucial role in
the proof of the lower bound on probabilities in the large deviations principle.

Definition 3.10.4. Fix u ∈ UΦ and ε > 0, and let Λ ⊂⊂ Zd and B ∈ B. If E = R,
then define

PBΛ,u,ε(B) := − log

∫
CuΛ,ε∩BΛ

e−H
0
ΛdλΛ−1.

If E = Z, then define

PBΛ,u(B) := − log

∫
CuΛ∩BΛ

e−H
0
ΛdλΛ−1.

These are called the pinned boundary estimates of B over Λ. In either case, we set
PBΛ,u,ε(B) := ∞ and PBΛ,u(B) := ∞ whenever u 6∈ UΦ. Consider now also some
random field µ ∈ PL(Ω,F∇). The pinned boundary limits of B and µ are defined as
follows:

PBu,ε(B) := lim sup
n→∞

n−d PBΠn,u,ε(B), PB(µ) := sup
ε > 0 and A ∈ B with µ ∈ A

PBS(µ),ε(A)

whenever E = R, and if E = Z, then

PBu(B) := lim sup
n→∞

n−d PBΠn,u(B), PB(µ) := sup
A ∈ B with µ ∈ A

PBS(µ)(A).

It is again immediate from these definitions that for fixed u ∈ UΦ, the functional
PB(·) is lower-semicontinuous on the set {S(·) = u} ⊂ PL(Ω,F∇).

For the proof of the large deviations principle in the next section, we require the
following equalities and inequalities.
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Theorem 3.10.5. If Φ ∈ SL +WL and µ ∈ PL(Ω,F∇), then

H(µ|Φ) = FB(µ) = PB(µ),

unless E = Z and S(µ) ∈ ∂UΦ. If however E = Z and S(µ) ∈ ∂UΦ, then

FB(µ) ≥ H(µ|Φ).

Finally, if µ ∈ P(Ω,F∇) r PL(Ω,F∇), then FB(µ) =∞.

Free and pinned boundary limits are calculated along the sequence (Πn)n∈N.
This choice is convenient, but by no means necessary. In the following sections, we
do not only prove the inequalities presented in the theorem: we also prove some
generalisations thereof where these quantities are calculated over sequences of the
form (Λn)n∈N with Λn := Λ−m(nD), where D is a bounded convex subset of Rd
of positive Lebesgue measure, and where m ∈ Z≥0. Observe that in this notation,
Πn = Λn for m = 0 and D = [0, 1)d ⊂ Rd.

Definition 3.10.6. Write C for the set of bounded convex subsets of Rd of positive
Lebesgue measure.

The definitions imply that PB(µ) ≥ FB(µ) for µ shift-invariant. In Subsec-
tion 3.10.2 we discuss free boundary limits. In particular, we show that FB(µ) ≥
H(µ|Φ) whenever µ is shift-invariant, and that FB(µ) =∞ whenever µ is not shift-
invariant. In Subsection 3.10.3 we prove that PB(µ) ≤ H(µ|Φ) whenever µ is ergodic
with S(µ) ∈ UΦ. In Subsection 3.10.4 we extend this inequality to shift-invariant
measures µ which are not ergodic.

3.10.2 Free boundary limits: empirical measure argument
The idea in this subsection is always to use the set B, the empirical measures Ln(φ)
for φ ∈ Bn, as well as the subsequential limits thereof as n→∞, to derive the desired
inequalities which were mentioned in the previous subsection. Let us first cover the
case that µ is not shift-invariant.

Lemma 3.10.7. If µ ∈ P(Ω,F∇) r PL(Ω,F∇), then FB(µ) =∞.

Proof. If µ is not shift-invariant, then there is a shift θ ∈ Θ and a continuous cylinder
function g : Ω → [0, 1] such that µ(g − θg) 6= 0. Define f := g − θg; this is a
bounded continuous cylinder function such that µ(f) 6= 0. Define ε := |µ(f)|/2 and
B := {ν : |ν(f)− µ(f)| < ε} ∈ B. For Λ ⊂⊂ Zd fixed and for n large, the measure
Ln(φ) = LΠn(φ) restricted to F∇Λ looks almost shift-invariant. More precisely, the
sequence of functions

Ω→ [−1, 1], φ 7→ Ln(φ)(f)

converges to 0 uniformly over φ ∈ Ω as n→∞. This proves that Bn = BΠn is empty
for n sufficiently large, that is, FB(µ) ≥ FB(B) =∞.

Next, we consider shift-invariant gradient random fields.

Lemma 3.10.8. For any µ ∈ PL(Ω,F∇), we have FB(µ) ≥ H(µ|Φ).

We start with the following auxiliary lemma.
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Lemma 3.10.9. Suppose that B ∈ B satisfies FB(B) < ∞. Then B̄ contains a
shift-invariant measure µ with H(µ|Φ) ≤ FB(B).

Proof. Write νBn for the normalised version of the measure 1Bne
−H0

ΠnλΠn−1 for each
n ∈ N, and observe that

FB(B) = lim inf
n→∞

n−dHΠn(νBn |Φ).

We focus on good subsequences of n, that is, subsequences along which the limit
inferior is reached.

Write m : N → N for a sequence of integers with m(n) → ∞ and m(n)/n → 0

as n → ∞, and set Π′n := Π
−m(n)
n = {m(n), . . . , n −m(n) − 1}d ⊂ Πn. Fix N ∈ N

minimal subject to N · Zd ⊂ L, and let k denote an integer multiple of N . Let n
denote another integer, which is so large that m(n) > k. The idea is now to apply
Lemma 3.7.12 to translates of Πk. In particular, if we write Π′′n,k for the set Πn with
the sets Πk + x removed for all x in Π′n ∩ (k · Zd), then that lemma asserts that

HΠn(νBn |Φ) ≥ HΠ′′n,k
(νBn |Φ) +

∑
x∈Π′n∩(k·Zd)

HΠk+x(νBn |Φ)− e∗(Πk + x). (3.10.10)

The set Π′′n,k is always connected and, as n→∞, we have |Π′′n,k| = o(nd). Therefore
the first term on the right in (3.10.10) has a lower bound of order o(nd). Moreover,
the value of e∗(Πk + x) is independent of x as long as x lies in L, and therefore we
obtain the asymptotic bound

1

|Π′n ∩ (k · Zd)|
∑

x∈Π′n∩(k·Zd)

HΠk+x(νBn |Φ) ≤ kd FB(B) + e∗(Πk) + o(1) (3.10.11)

as n→∞ along a good subsequence. Moreover, if we write µn,k for the measure
1

|Π′n ∩ (k · Zd)|
∑

x∈Π′n∩(k·Zd)

θxν
B
n ,

then the previous inequality and convexity of relative entropy imply that

HΠk(µn,k|Φ) ≤ kd FB(B) + e∗(Πk) + o(1)

as n→∞ along a good subsequence. We may replace the sublattice k ·Zd by another
set k · Zd + y for y ∈ L/(k · Zd) in the previous discussion, and by doing so and
averaging further, it is immediate that the sequence of measures µn defined by

1

|Π′n ∩ L|
∑

x∈Π′n∩L
θxν

B
n ,

also satisfies
HΠk(µn|Φ) ≤ kd FB(B) + e∗(Πk) + o(1)

as n → ∞ along a good subsequence. Compactness of the lower level sets of
relative entropy implies that the sequence µn has a subsequential limit—at least
when restricted to F∇Πk . Using a standard diagonal argument for convergence for all
integers k ∈ N · N, one obtains a subsequential limit µ which is shift-invariant and
satisfies

HΠk(µ|Φ) ≤ kd FB(B) + e∗(Πk)

for all k, that is, H(µ|Φ) ≤ FB(B). This measure must clearly lie in B̄ by construction.
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Proof of Lemma 3.10.8. Fix µ ∈ PL(Ω,F∇), and suppose that FB(µ) < ∞. Then
the lower level set of the specific free energy MFB(µ) endowed with the topology of
weak local convergence is metrisable, and therefore we may choose for each n an
open set Bn ∈ B, containing µ and with Bn ∩MFB(µ) of diameter at most 1/n in this
metric. Then each set B̄n contains a measure µn with H(µn|Φ) ≤ FB(Bn) ≤ FB(µ).
By choice of Bn we must have µn → µ, and lower-semicontinuity implies that

H(µ|Φ) ≤ lim inf
n→∞

H(µn|Φ) ≤ lim inf
n→∞

FB(Bn) ≤ FB(µ).

Finally, we discuss how to extend this result to other shapes.

Definition 3.10.12. For fixed D ∈ C and µ ∈ P(Ω,F∇), we write

FB(µ : D) := sup
B ∈ B with µ ∈ B

lim inf
n→∞

n−d FBΛn(B),

where we write Λn for Λ(nD) = nD ∩ Zd.

The previous results extend as follows by analogous arguments—the Lebesgue
measure Leb(D) would first appear as a factor on the left in (3.10.11) in the generalised
argument.

Lemma 3.10.13. Consider D ∈ C and µ ∈ P(Ω,F∇). If µ is not shift-invariant,
then FB(µ : D) =∞, and if µ is shift-invariant, then FB(µ : D) ≥ Leb(D) · H(µ|Φ).

3.10.3 Pinned boundary limits for µ ergodic: truncation argument
The goal of this section is to derive the following lemma. The proof starts with a
simple reduction, and is then intermitted to state an auxiliary result and to give an
overview of the remainder of the proof. The proof extends the random truncation
argument in [54] to the infinite-range Lipschitz setting.

Lemma 3.10.14. If µ ∈ PL(Ω,F∇) is ergodic and u := S(µ) ∈ UΦ, then PB(µ) ≤
H(µ|Φ).

Proof. It suffices to consider the case that H(µ|Φ) <∞, which implies in particular
that µ is K-Lipschitz. We first focus on the discrete case E = Z, then generalise
to the continuous case E = R; the latter comes with some additional technical
complications.

The discrete case. Pick B ∈ B with µ ∈ B. It suffices to show that

H(µ|Φ) = lim
n→∞

n−dHΠn(µ|Φ) ≥ lim sup
n→∞

n−d PBΠn,u(B) = lim sup
n→∞

n−dHΠn(νBn |Φ),

where νBn is the normalised measure

νBn :=
1

Z
1Cun∩Bne

−H0
ΠnλΠn−1.

Observe that νBn minimises HΠn(·|Φ) over all measures which are supported on
Cun ∩ Bn. Therefore it suffices to construct a sequence of measures (µn)n∈N, with
each µn supported on Cun ∩ Bn, and such that HΠn(µn|Φ) ≤ HΠn(µ|Φ) + o(nd) as
n→∞. Let us now intermit the proof to give an overview of the remainder of the
proof, before continuing.
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One continues roughly as follows. Always take 0 as a reference point for all
gradient measures. This means that µ-almost surely φ(0) = 0. Write φ±n for the
largest and smallest q-Lipschitz extensions of φu

∂RΠn
to Πn respectively, for each

n ∈ N. Define the random sets

A−n := {x ∈ Πn : φ(x) < φ−n (x)} and A+
n := {x ∈ Πn : φ(x) > φ+

n (x)}.

Note that φ±n (0) = 0 by definition; 0 is µ-almost surely not contained in A±n .
Since µ is ergodic and K-Lipschitz, almost every sample φ from µ is asymptotically

close to u, in the sense of Theorem 3.10.15. As u belongs to Uq, the interior of the set
of Lipschitz slopes, the function φ+

n is substantially larger than u on most vertices in
Πn. This means that µ(|A+

n |) = o(nd) as n→∞, and similarly µ(|A−n |) = o(nd). For
each n ∈ N, define the measure µ±n as follows: to draw a sample from µ±n , sample first
a height function φ from µ, then replace this sample by ψ := φ−n ∨ φΠn ∧ φ+

n . Note
that φ and ψ differ at at most o(nd) vertices in Πn on average as n→∞. Moreover,
the modified height function ψ is q-Lipschitz if the original height function φ was
q-Lipschitz. In particular, we deduce that

HΠn(µ±n |Φ) = HΠn(µ|Φ) + o(nd).

The measure µ±n is clearly supported on Cun , because φ−n , φ+
n , and φu are equal on

∂RΠn. Using again the ergodicity of µ through Theorem 3.10.15, one can show that
µ(Bn)→ 1 as n→∞, and consequently µ±n (Bn)→ 1 because φ and ψ agree on most
vertices of Πn. This proves that the sequence (µn)n∈N defined by µn := µ±n (·|Bn)
is the desired sequence of measures. This concludes the proof overview for E = Z.
In the real case E = R, the details are more involved, owing to the following two
difficulties:

1. We cannot simply replace φ by φ−n ∨φΠn ∧φ+
n , because the measure so produced

would not be absolutely continuous with respect to Lebesgue measure,

2. We only have a bound on H{x}(φ) if φ is qε-Lipschitz at x; it is not sufficient
to make modifications which are q-Lipschitz.

Let us now state Theorem 3.10.15 before continuing the proof of Lemma 3.10.14.

Theorem 3.10.15. Consider µ ∈ PL(Ω,F∇) ergodic. Then Ln(φ)(f) → µ(f) as
n→∞ for µ-almost every φ, for any bounded cylinder function f . Suppose now that µ
is also K-Lipschitz with slope u := S(µ). Then µ-almost surely ‖φΠn−φ(0)−u|Πn‖∞ ≤
εn for n sufficiently large, for any fixed constant ε > 0.

The first assertion is the ergodic theorem. The second assertion is straightforward:
in the Lipschitz setting, the height difference (φ(x)− φ(0))/‖x‖1 is approximately
equal to the average of the gradient—which is bounded in magnitude—of φ over a
large set Λ ⊂⊂ Zd.

Continuation of the proof of Lemma 3.10.14. Recall that E = Z. By taking the set
B ∈ B smaller if necessary, we suppose that B is of the form

B = {ν ∈ P(Ω,F∇) : |ν(fi)− µ(fi)| < 2η for all i}

for a finite collection (fi)i of continuous cylinder functions fi : Ω → [0, 1] and for
some η > 0, and we write B∗ for the same set with 2η replaced by η. The ergodic
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theorem asserts that µ(B∗n)→ 1 as n→∞. Consider µ a non-gradient measure on
(Ω,F) by taking 0 ∈ Πn as a reference point: this means that φ(0) = 0 almost surely
in µ.

Recall the definitions of φ±n and A±n from the proof overview, and claim that
µ(|A±n |) = o(nd) as n→∞. The function φ+

n is pyramid-shaped, as in Figure 3.3—
that figure concerns the more complicated continuous setting E = R, but the shape
of φ+

n is the same. Formally, this means that there exist constants C ′ > 0 and ε′ > 0
such that for any n ∈ N and for any x ∈ Πn,

φ+
n (x) ≥ u(x) + ε′d1(x, ∂RΠn)− C ′. (3.10.16)

This is a consequence of Lemma 3.6.1 and the fact that u is in UΦ, the interior of
the set of slopes u′ for which u′|L is q-Lipschitz. Now fix ε′′ > 0. By (3.10.16), the
number of points x ∈ Πn at which φ+

n (x) ≤ u(x) + ε′′n is bounded from above by
(2dε′′/ε′)nd + o(nd) as n→∞. Theorem 3.10.15 tells us that

µ(|{x ∈ Πn : φ(x) > u(x) + ε′′n}|) = o(nd).

Combining the two bounds gives µ(|A+
n |) ≤ (2dε′′/ε′)nd + o(nd). The constant ε′′

may be chosen arbitrarily small, and therefore we obtain µ(|A+
n |) = o(nd). In the

same spirit, one obtains µ(|A−n |) = o(nd). This proves the claim.
Next, we construct for each n ∈ N a new measure µ+

n , the upper truncation of
µ. To sample from µ+

n , first sample φ from µ, then replace φ(x) by φ+
n (x) for any

x ∈ A+
n . This means that the distribution of φΠn in µ+

n is the same as the distribution
of φΠn ∧ φ+

n in µ. Assert that

HΠn(µ+
n |Φ) = HΠn(µ|Φ) + o(nd).

We present an alternative three-stage construction of µ+
n , and demonstrate that

the free energy changes by no more than o(nd) at every stage. Write S for the set of
finite subsets of Zd, which is countable, and write α for the counting measure on S.
Write Gn for the smallest σ-algebra on Ω× S containing A× {Λ} for any A ∈ F∇Πn
and any Λ ⊂ Πn.

For the first stage, write µ̃n for the measure µ with the set A+
n attached to every

sample φ ∈ Ω. The measure µ̃n is thus a probability measure on the measurable
space (Ω× S,Gn). Moreover, the distribution of φΠn is the same in µ as it is in µ̃n,
and the set A+

n depends deterministically on φΠn . Therefore

HΠn(µ|Φ) = HF∇Πn

(
µ
∣∣∣e−H0

ΠnλΠn−1
)

= HGn
(
µ̃n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
. (3.10.17)

For the second stage, introduce a new measure µ̃+
n on (Ω × S,Gn). To sample

from µ̃+
n , sample first a pair (φ,A) from µ̃n, then replace φ(x) by φ+

n (x) for every
x ∈ A. Remark that the distribution of φΠn is the same in µ̃+

n as it is in µ+
n . Write

A′ for the set Πn rA. The entropies of µ̃n and µ̃+
n (relative to the reference measure

in the final term of (3.10.17)) can be calculated in three steps. First, calculate the
entropy of the choice of the set A. Second, calculate the entropy of the choice of the
values of φ on A′. Third, calculate the entropy of the choice of the values of φ on
A. In the construction of µ̃+

n we only change the values of φ on A, and therefore the
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third step is the only step that produces a different entropy term. We have

HGn
(
µ̃+
n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
−HGn

(
µ̃n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
=

∫ (
H
(
δφ+

n |A

∣∣∣e−HA,Πn (·,φA′ )λA
)
−H

(
µ(A,φA′ )πA

∣∣∣e−HA,Πn (·,φA′ )λA
))

dµ̃n(φ,A)

= µ̃n
(
HA,Πn(φ ∧ φ+

n )−HA,Πn(φ)
)
−
∫
H
(
µ(A,φA′ )πA

∣∣∣λA) dµ̃n(φ,A).

(3.10.18)

In these equations, δ denotes the Dirac measure, πA is the projection kernel onto A,
and µ(A,φA′ ) denotes the original measure µ conditioned on seeing A+

n = A and on
the values of φ on the set A′. For the first term in (3.10.18) we observe that∣∣µ̃n (HA,Πn(φ ∧ φ+

n )−HA,Πn(φ)
)∣∣ = O(µ(|A+

n |)) = o(nd);

this follows from the claim and (3.7.2)—noting that φ and φ ∧ φ+
n are q-Lipschitz.

For µ̃n-a.e. (φ,A), we observe that the measure µ(A,φA′ ) produces K-Lipschitz height
functions almost surely, and consequently the same measure—restricted to A—is
supported on a set of cardinality at most (2K + 1)|A|. Conclude that the second term
in (3.10.18) is bounded absolutely by

µ(|A+
n |) log(2K + 1) = o(nd).

To sample from µ+
n , sample a pair (φ,A) from µ̃+

n , then simply forget about the
set A. This is the third stage. Write νn for marginal of µ̃+

n on S. Then

HΠn(µ+
n |Φ) +H(νn|α) ≤ HGn

(
µ̃+
n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
≤ HΠn(µ+

n |Φ).

Evidently H(νn|α) ≤ 0; the goal is to find a lower bound on H(νn|α). The measure νn
is a probability measure on the set of subsets of Πn and we also know that νn(|A|) =
µ(|A+

n |). The entropy of νn is minimised (among all probability measures with these
two properties) if one samples from νn by flipping a coin independently for every vertex
x ∈ Πn to determine if x ∈ A. The Bernoulli parameter of the coin is µ(|A+

n |)/nd
so that νn(|A|) = µ(|A+

n |). Write f(p) = p log p + (1 − p) log(1 − p), the entropy
of a Bernoulli trial with parameter p. Then the entropy of the entropy-minimising
measure is ndf(µ(|A+

n |)/nd). Now limp→0 f(p) = 0 and therefore H(νn|α) = o(nd).
Conclude that the assertion holds true, that is,

HΠn(µ+
n |Φ) = HΠn(µ|Φ) + o(nd).

The measure µ±n is now obtained from µ+
n by applying a lower truncation. To

sample from µ±n , sample first a height function φ from µ+
n , then replace φ(x) by φ−n (x)

for any x ∈ A−n . Alternatively, sample φ from µ, then replace φΠn by φ−n ∨ φΠn ∧ φ+
n .

By similar arguments as before we have

HΠn(µ±n |Φ) = HΠn(µ+
n |Φ) + o(nd) = HΠn(µ|Φ) + o(nd)

as n→∞. The measure µ±n is supported on Cun . Moreover, because µ(|A±n |) = o(nd)
and because µ(B∗n)→ 1 as n→∞, we have µ±n (Bn)→ 1 as n→∞. In particular,
this means that the measures µn := µ±n (·|Bn) are supported on Cun ∩Bn and satisfy
HΠn(µn|Φ) ≤ HΠn(µ|Φ) + o(nd) as n→∞. This concludes the proof for E = Z.
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φ+
n , φ+

n + ε, φ+
n + 2ε

φ−n , φ−n − ε, φ−n − 2ε

φψ

φu

Figure 3.3: A random truncation for E = R. The randomly truncated sample ψ
remains between φ−n − 2ε and φ+

n + 2ε.

The continuous case. Fix ε > 0 so small that φu is q4ε-Lipschitz, and pick B ∈ B
with µ ∈ B. Assume a choice of B and B∗ as for the discrete case. It suffices to
find a sequence of measures (µn)n∈N with µn supported on Cun,2ε ∩ Bn and with
HΠn(µn|Φ) ≤ HΠn(µ|Φ) + o(nd). Write φ±n for the largest and smallest q3ε-Lipschitz
extensions of φu

∂RΠn
to Πn respectively, for each n ∈ N. Take again 0 as reference

vertex for the gradient setting (as for the discrete case), and define the random sets

A−n := {x ∈ Πn : φ(x) < φ−n (x)− 2ε} and A+
n := {x ∈ Πn : φ(x) > φ+

n (x) + 2ε}.

Note that φ±n (0) = 0 by definition, and therefore µ-almost surely 0 6∈ A±n . Observe
that µ(|A±n |) = o(nd) by arguments identical to the case E = Z; one can show that φ+

n

is pyramid-shaped in the sense of (3.10.16) because φu is q4ε-Lipschitz and because
we chose the extension φ+

n to be the largest q3ε-Lipschitz extension.
For each n ∈ N we construct a new measure µ+

n on (Ω,F∇Πn), the upper truncation
of µ. Let (X(x))x∈Zd be a process of i.i.d. random variables, uniformly random in the
interval [0, ε], in some new measure ν. To sample from µ+

n , first sample (φ,X) from
µ× ν. Then, for each x ∈ A+

n , replace φ(x) by φ+
n (x) +X(x). Figure 3.3 displays the

original function φ and the randomly truncated function ψ; the upper truncation is
located on the right hand side, a lower truncation (which is defined at a later stage)
occurs on the left. The new measure µ+

n is absolutely continuous with respect to
λΠn−1 because we replaced each value φ(x) by a continuously distributed random
variable. Assert that

HΠn(µ+
n |Φ) ≤ HΠn(µ|Φ) + o(nd). (3.10.19)

Again, we present an alternative three-stage construction of µ+
n , and we demonstrate

that the entropy does not increase by more than o(nd) at every stage.
For the first stage, write µ̃n for the measure µ with the set A+

n attached to
every sample φ ∈ Ω. Define α and Gn as before. The measure µ̃n is a probability
measure on (Ω× S,Gn). Note that (3.10.17) holds for this measure as A+

n depends
deterministically on φΠn .

For the second stage, introduce a new measure µ̃+
n on (Ω×S,Gn). To sample from

µ̃+
n , sample first a triple (φ,A,X) from µ̃n × ν, then replace φ(x) by φ+

n (x) +X(x)
for every x ∈ A. Write A′ for Πn r A. Write ψ for the function on Πn defined by
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ψA = φ+
n |A + XA and ψA′ = φA′ . One calculates the entropies of µ̃n and µ̃+

n as in
the discrete case to deduce that

HGn
(
µ̃+
n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
−HGn

(
µ̃n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
=

∫ (
H
(

(ν + φ+
n )πA

∣∣∣e−HA,Πn (·,φA′ )λA
)
−H

(
µ(A,φA′ )πA

∣∣∣e−HA,Πn (·,φA′ )λA
))

dµ̃n(φ,A)

= µ̃n × ν (HA,Πn(ψ)−HA,Πn(φ))− µ̃n(|A|) log ε−
∫
H
(
µ(A,φA′ )πA

∣∣∣λA) dµ̃n(φ,A).

In these equations, µ(A,φA′ ) denotes the original measure µ conditioned on seeing
A+
n = A and on the values of φ on the set A′. By ν+φ+

n we simply mean the measure
obtained by shifting each sample X from ν by φ+

n . As in the discrete setting, the
last two terms have an upper bound of order o(nd) as n→∞. It suffices to find an
appropriate upper bound for the first term in the final expression.

Let (A, q) denote the local Lipschitz constraint. By Proposition 3.6.5, it is possible
to find a constant 0 < ε′ ≤ ε, such that for any {x, y} ∈ A, we have

qε′(x, y) ≥ q(x, y)− ε.

Claim that µ̃n × ν-almost surely, ψ is qε′-Lipschitz at every x ∈ A. In other words,
we claim that

− qε′(y, x) ≤ ψ(y)− ψ(x) ≤ qε′(x, y) (3.10.20)

whenever x ∈ A, y ∈ Πn, and {x, y} ∈ A. Suppose first that y ∈ A. The function φ+
n is

q3ε-Lipschitz and 0 ≤ (ψ−φ+
n ){x,y} = X{x,y} ≤ ε for x, y ∈ A, and therefore (3.10.20)

holds true with ε′ replaced by ε. But qε ≤ qε′ , which implies (3.10.20) without said
replacement. Now suppose that y 6∈ A, so that ψ(y)− ψ(x) = φ(y)− φ+

n (x)−X(x).
For the righthand inequality of (3.10.20) we have (almost surely)

φ(y)− φ+
n (x)−X(x) ≤ (φ+

n (y) + 2ε)− φ+
n (x) ≤ q3ε(x, y) + 2ε ≤ qε(x, y) ≤ qε′(x, y).

For the inequality on the left we see that (using φ+
n (x) + X(x) ≤ φ(x) − ε for the

first inequality)

φ(y)− φ+
n (x)−X(x) ≥ φ(y)− φ(x) + ε ≥ −q(y, x) + ε ≥ −qε′(y, x).

The middle inequality in this equation is due to the fact that φ is µ-almost surely
q-Lipschitz. This proves the claim.

By the claim and (3.7.3), we have

µ̃n × ν (HA,Πn(ψ)) ≤ O(µ(|A+
n |)) = o(nd).

For the other Hamiltonian we simply observe that

µ̃n × ν (HA,Πn(φ)) = µ̃n (HA,Πn(φ)) ≥ −‖Ξ‖µ(|A+
n |) = o(nd).

Putting all estimates together, we see that

HGn
(
µ̃+
n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
≤ HΠn(µ|Φ) + o(nd).

To prove the original assertion, simply observe that, as in the discrete case, forgetting
about the information encoded in the set A changes the entropy of µ̃+

n by no more
than o(nd):

HΠn(µ+
n |Φ) = HGn

(
µ̃+
n

∣∣∣(e−H0
ΠnλΠn−1

)
× α

)
+ o(nd).
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This proves the assertion (3.10.19).
Finally one constructs a lower truncation µ±n from µ+

n . To sample from µn, one
first samples φ from µ+

n . Then, for every x ∈ A−n , one resamples φ(x) independently
and uniformly at random from the interval [φ−n (x)− ε, φ−n (x)]. As before, we have

HΠn(µ±n |Φ) ≤ HΠn(µ+
n |Φ) + o(nd) ≤ HΠn(µ|Φ) + o(nd).

Now φ−n − 2ε ≤ φΠn ≤ φ+
n + 2ε almost surely in the measure µ±n and this implies in

particular that
φu∂RΠn

− 2ε ≤ φ∂RΠn ≤ φ
u
∂RΠn

+ 2ε,

that is, µ±n is supported on Cun,2ε. Since µ(B∗n)→ 1 and µ(|A±n |) = o(nd) as n→∞,
we have µ±n (Bn)→ 1 as n→∞. This proves that the sequence µn := µ±n (·|Bn) has
the desired properties.

We now proceed as for free boundary limits, and define pinned boundary limits
over other Van Hove sequences.

Definition 3.10.21. Fix D ∈ C and m ∈ Z≥0, and write Λn for Λ−m(nD) =
(nD ∩ Zd)−m. Consider µ ∈ PL(Ω,F∇). If E = Z, then define

PB(µ : D,m) := sup
B ∈ B with µ ∈ B

lim sup
n→∞

n−d PBΛn,S(µ)(B),

and if E = R, then define

PB(µ : D,m) := sup
ε > 0 and B ∈ B with µ ∈ B

lim sup
n→∞

n−d PBΛn,S(µ),ε(B).

Finally, write PB∗(µ) := sup(D,m)∈C×Z≥0
PB(µ : D,m)/Leb(D).

It is immediate that PB∗(µ) ≥ PB(µ) because one can take D = [0, 1)d and m = 0
in the supremum in this new definition. By reordering the suprema in the definitions,
it is also clear that PB∗ is lower-semicontinuous on the set {S(·) = u} ⊂ PL(Ω,F∇)
for any u.

Lemma 3.10.22. Consider D ∈ C, m ∈ Z≥0, and µ ∈ PL(Ω,F∇) ergodic with
S(µ) ∈ UΦ. Then

PB(µ : D,m) ≤ Leb(D) · H(µ|Φ).

In other words, PB∗(µ) ≤ H(µ|Φ).

Proof. Write u := S(µ) and Λn := Λ−m(nD), and fix B ∈ B with µ ∈ B. The
truncation argument in the proof of Lemma 3.10.14 implies that PBΛn,u(B) ≤
HΛn(µ|Φ) + o(nd) as n → ∞ if E = Z, and PBΛn,u,ε(B) ≤ HΛn(µ|Φ) + o(nd) as
n→∞ for any ε > 0 if E = R. Therefore it suffices to demonstrate that

lim sup
n→∞

n−dHΛn(µ|Φ) ≤ Leb(D) · H(µ|Φ). (3.10.23)

Without loss of generality, we suppose that D ⊂ [ε, 1− ε]d ⊂ [0, 1)d ⊂ Rd for some
ε > 0. Define ∆n := ΠnrΛn. Then n−d|∆n| → 1−Leb(D) as n→∞, and therefore
Proposition 3.7.8 implies that

lim inf
n→∞

n−dH∆n(µ|Φ) ≥ (1− Leb(D)) · H(µ|Φ).

Note that (3.10.23) now follows from the fact that

n−d(HΛn(µ|Φ) +H∆n(µ|Φ)) ≤ H(µ|Φ) + o(1)

as n→∞.
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3.10.4 Pinned boundary limits for all µ: washboard argument

The purpose of this subsection is to demonstrate that PB∗(µ) ≤ H(µ|Φ) for any
shift-invariant random field µ with S(µ) ∈ UΦ. The previous subsection proved
this for µ ergodic. First, we demonstrate that PB∗ is convex (Lemma 3.10.24)—
recall that H(·|Φ) is affine. The idea is then to use lower-semicontinuity of PB∗ in
the topology of weak local convergence to derive the inequality for all non-ergodic
measures (Lemma 3.10.33). Extra care must be taken whenever E = Z, because in
that case there exist ergodic measures with finite specific free energy which have their
slope in ∂UΦ rather than UΦ. This pathology is dealt with in Lemma 3.10.32.

Lemma 3.10.24. The functional PB∗ is convex.

Consider ν1, ν2 ∈ PL(Ω,F∇) with S(ν1), S(ν2) ∈ UΦ, and define µ := (1−t)ν1+tν2

for some t ∈ (0, 1). If we take the value of PB∗(ν1) and PB∗(ν2) for granted, then we
look for an upper bound on PB∗(µ). This means that we look for asymptotic lower
bounds on the integrals defining the pinned boundary estimates of µ.

The proof of the lemma uses a general strategy which produces an asymptotic
lower bound on this particular integral, and which is used again twice in this chapter:
in the lower bound on probabilities in the proof of the large deviations principle
in Subsection 3.11.4, and when constructing the contradiction which leads to a
proof of strict convexity of the surface tension in Subsection 3.12.2. The general
idea is as follows: Lemma 3.10.14, and later (once it is proven) Lemma 3.10.33,
provide the fundamental building blocks for the lower bounds. One then shows that
these building blocks can be put together without gaining too much energy, that is,
without decreasing the value of the integral of interest by too much. For this, one
appeals to Theorem 3.6.9, which allows one to find suitable discrete approximations of
continuous Lipschitz profiles, and the upper attachment lemma (Lemma 3.7.4), which
allows one to bound the energy increase due to combining height functions defined
on different parts of Zd. This is already sufficient to understand the macroscopic
shape of the height functions. In the context of boundary limits, this is expressed
through the pinning of the height functions on the boundary ∂RΛ of the set Λ of
interest—essentially by restricting to the set CuΛ or CuΛ,ε. It is, however, also necessary
to understand the behaviour of the local statistics of the height functions—expressed
in the boundary limits through the sets BΛ—under the operation of putting together
the fundamental building blocks. For this, one appeals to the following result.

Proposition 3.10.25. Consider some set D ∈ C and a nonnegative integer m ∈ Z≥0.
Consider also some finite family (Di,mi)i ⊂ C × Z≥m with the sets Di disjoint and
contained in D. Write Λn := Λ−m(nD) and Λin := Λ−mi(nDi). Then for any cylinder
function f : Ω→ [0, 1], we have

lim
n→∞

sup
φ∈Ω

∣∣∣LΛn(φ)(f)−
∑

i
Leb(Di)
Leb(D) LΛin

(φ)(f)
∣∣∣ ≤ Leb(D r ∪iDi)

Leb(D)
.

Proof. Note that
|L ∩ Λin|
|L ∩ Λn|

→ Leb(Di)

Leb(D)

as n → ∞, and therefore it suffices to prove the proposition for the latter fraction
replaced by the former. Suppose that f is F∆-measurable for some ∆ ⊂⊂ Zd which
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contains 0. Write Pn for the uniform probability measure on {θx : x ∈ L ∩ Λn}. By
coupling the measures in the obvious way, we observe that

LΛn(φ)(f)−
∑
i

|L ∩ Λin|
|L ∩ Λn|

LΛin
(φ)(f) = En(gn)

where gn is defined by

gn(θ) =


0 if θ∆ ⊂ Λin for some i,
f(θφ̄Λn)− f(θφ̄Λin

) if θ0 ∈ Λin for some i but θ∆ 6⊂ Λin,
f(θφ̄Λn) otherwise.

Now |gn| ≤ 1 and Pn(θ∆ 6⊂ Λin for any i) = Leb(Dr∪iDi)/Leb(D)+o(1) as n→∞,
which implies the proposition.

The particular proof of Lemma 3.10.24 utilises the so-called washboard construc-
tion (see Figure 3.4), which appears in the work of Sheffield [54], and is adapted here
to the particular Lipschitz setting.

Proof of Lemma 3.10.24. Consider µ := sν1 + tν2 for s, t ∈ (0, 1) with s+ t = 1 and
for some measures ν1, ν2 ∈ PL(Ω,F∇) which have their slope in UΦ. The goal is to
prove that PB∗(µ) ≤ sPB∗(ν1) + tPB∗(ν2).

Write u := S(µ), u1 := S(ν1), and u2 := S(ν2). Consider D ∈ C, m ∈ Z≥0, and
B ∈ B with µ ∈ B. Write Λn := Λ−m(nD). Fix also some ε > 0. If E = Z, then we
must show that

lim sup
n→∞

n−d PBΛn,u(B) ≤ Leb(D)(sPB∗(ν1) + tPB∗(ν2)),

and if E = R, then we must show that

lim sup
n→∞

n−d PBΛn,u,ε(B) ≤ Leb(D)(sPB∗(ν1) + tPB∗(ν2)).

By choosing ε > 0 smaller if necessary, we suppose that u, u1, u2 ∈ Uq7ε . By
choosing B smaller if necessary, we suppose that B is of the form

B = {π : |µ(fi)− π(fi)| < 2η for all i} ∈ B

for some finite family (fi)i of continuous cylinder functions fi : Ω → [0, 1] and for
some η > 0, and we write

Bj := {π : |νj(fi)− π(fi)| < η for all i} ∈ B

for j ∈ {1, 2}.
The idea of the proof is roughly as follows. First, we partition a large subset of D

into finitely many convex shapes. Second, we find a continuous Lipschitz function
f which equals u on ∂D, and which is affine on each convex shape in this partition,
with slope either u1 or u2. This function is chosen such that the Lebesgue measure of
the convex shapes with slope uj is roughly sLeb(D) for j = 1 and roughly tLeb(D)
for j = 2. Informally, the function f looks like a “washboard”. Next, we define
fn := nf(·/n), and use the existence of the function fn and Theorem 3.6.9 to find for
each n ∈ N a corresponding height function φn. The existence of the height function
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∝ ε2

∂′D

∂D

D′

ε1

ε1

Figure 3.4: The washboard and the function f : ∂′D ∪D′ → R

φn and the previously described general strategy allow us to build a direct comparison
between PBΛn,u(B) or PBΛn,u,ε(B) and the numbers PB∗(ν1) and PB∗(ν2).

We start by constructing the continuous “washboard”—see Figure 3.4. Set v :=
u1 − u2 if u1 6= u2, and choose v ∈ (Rd)∗ r {0} arbitrary otherwise. Define

w : Rd → Z, x 7→

{
2bv(x)c if v(x)− bv(x)c ∈ [0, t),

2bv(x)c+ 1 if v(x)− bv(x)c ∈ [t, 1).

Write p : Rd → R for the unique continuous function that maps 0 to 0, and which
has gradient uj on the interior of {w ∈ 2Z + j} ⊂ Rd for j ∈ {1, 2}. For α > 0, write
wα for the map wα(·) := w(·/α), and write pα for the map pα(·) := αp(·/α). It is
straightforward to see that pα has gradient uj on {wα ∈ 2Z + j} for j ∈ {1, 2}, and
that ‖pα − u‖∞ ∝ α. Observe also that p and pα are ‖ · ‖q7ε-Lipschitz.

In the remainder of the proof, we shall work with three limits. First we take
n→∞, then ε2 → 0, then ε1 → 0. Reference to these variables is sometimes omitted
for brevity. Define

∂′D := {x ∈ Rd : d2(x, ∂D) < ε1},
D′ := {x ∈ D : d2(x, ∂D) > 2ε1},
D′k := D′ ∩ {wε2 = k},

where d2 denotes Euclidean distance. Write f : ∂′D∪D′ → R for the function defined
by

f(x) :=

{
u(x) if x ∈ ∂′D,
pε2(x) if x ∈ D′.

This function is ‖ · ‖q6ε-Lipschitz for ε2 sufficiently small, depending on ε1. Note
that f is affine with gradient u1 on D′k for k odd and with gradient u2 on D′k for k
even. Moreover, the family (D′k)k∈Z is a partition of D′. Only finitely many members
are nonempty, and the nonempty members are convex, bounded, and have positive

114



Lebesgue measure. The merit of this construction is that

Leb(∪k∈2Z+1D
′
k)→ε2→0 sLeb(D′)→ε1→0 sLeb(D), (3.10.26)

Leb(∪k∈2ZD
′
k) →ε2→0 tLeb(D′) →ε1→0 tLeb(D). (3.10.27)

For n ∈ N, define fn : n(∂′D ∪ D′) → R by fn(·) := nf(·/n)—this function is
also ‖ · ‖q6ε-Lipschitz. In particular, Theorem 3.6.9 implies that for some M ∈ Z≥m
depending only on ε, there exists a q-Lipschitz height function φn ∈ Ω such that

1. ∇φn|Λ−M (n∂′D) = ∇φu|Λ−M (n∂′D),

2. ∇φn|Λ−M (nD′k) = ∇φu1 |Λ−M (nD′k) for all k odd,

3. ∇φn|Λ−M (nD′k) = ∇φu2 |Λ−M (nD′k) for all k even,

4. φn is q5ε-Lipschitz if E = R.

Recall the definition of Λn, and define

Λn,k := Λ−M (nD′k), Λ0
n := Λn r ∪k(Λn,k r {0Λn,k}), Λ∗n := Λn r ∪kΛ−Rn,k .

Note that ∂RΛn ⊂ Λ−M (n∂′D) for n sufficiently large, and consequently ∇φn|∂RΛn =
∇φu|∂RΛn . This also implies that the sets ∂RΛn and Λn,k are all disjoint for fixed n
as k ranges over Z. Finally, Λn,k ⊂ Λn for all k.

The idea is now to use the existence of the function φn to derive the inequalities.
We distinguish two cases, depending on whether E = Z or E = R. Start with the
former, which is easier. Write An for the set of height functions φ such that

1. ∇φ equals ∇φn on Λ∗n,

2. φ ∈ B1
Λn,k

for all k odd,

3. φ ∈ B2
Λn,k

for all k even.

Note that An ⊂ CuΛn because ∂RΛn ⊂ Λ∗n and because ∇φn = ∇φu on ∂RΛn. It
is straightforward to work out that An ⊂ BΛn for n sufficiently large and ε1, ε2

sufficiently small, by application of Proposition 3.10.25 combined with (3.10.26)
and (3.10.27).

Therefore it suffices to demonstrate that

lim inf n−d log

∫
An

e−H
0
ΛndλΛn−1 ≥ −Leb(D)(sPB∗(ν1) + tPB∗(ν2)) (3.10.28)

where the limit is in the variables n, ε2, and ε1. Moreover, since ∇φ equals ∇φn on
Λ∗n for any φ ∈ An, this restriction to Λ∗n is q-Lipschitz, and the upper attachment
lemma (Lemma 3.7.4) implies that

H0
Λn ≤

∑
k

H0
Λn,k

+
∑
k

e+(Λn,k) + |Λn r ∪kΛn,k| max
x∈Zd/L

e+({x}) (3.10.29)

on An. For the third term we have n−d|Λn r ∪kΛn,k| →n→∞ Leb(D rD′)→ε1→0 0,
and the second term is of order o(nd) as n→∞. This implies that

lim inf n−d log

∫
An

e−H
0
ΛndλΛn−1 ≥ lim inf n−d log

∫
An

e
−

∑
kH

0
Λn,kdλΛn−1. (3.10.30)
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Recall the definition of Λ0
n, and consider λΛn−1 a product measure, by writing

λΛn−1 := λΛ0
n−1 ×

∏
k

λΛn,k−1.

Note that An contains exactly all height functions φ such that

1. ∇φ equals ∇φn on Λ0
n,

2. φ ∈ Cu1
Λn,k
∩B1

Λn,k
for all k odd,

3. φ ∈ Cu2
Λn,k
∩B2

Λn,k
for all k even,

and therefore∫
An

e
−

∑
kH

0
Λn,kdλΛn−1 =

∫
{∇φ equals ∇φn on Λ0

n}
dλΛ0

n−1(φ)

·
∏

k∈2Z+1

∫
C
u1
Λn,k
∩B1

Λn,k

e
−H0

Λn,kdλΛn,k−1 ·
∏
k∈2Z

∫
C
u2
Λn,k
∩B2

Λn,k

e
−H0

Λn,kdλΛn,k−1.

The first factor equals one since we are dealing with the counting measure, and
therefore

log

∫
An

e
−

∑
kH

0
Λn,kdλΛn−1 = −

∑
k∈2Z+1

PBΛn,k,u1(B1)−
∑
k∈2Z

PBΛn,k,u2(B2).

For fixed ε1, ε2 only finitely many terms are possibly nonzero—those corresponding
to nonempty sets D′k—and for each term we have (for j ∈ {1, 2})

lim sup
n→∞

n−d PBΛn,k,uj (B
j) ≤ PB(νj : D′k,M) ≤ Leb(D′k) PB∗(νj).

Therefore (3.10.26) and (3.10.27) imply

lim inf n−d log

∫
An

e−H
0
ΛndλΛn−1 ≥ −Leb(D)(sPB∗(ν1) + tPB∗(ν2)),

the desired inequality.
Let us now discuss what changes for E = R. Write An for the set of samples φ

such that

1. |(φΛ0
n
− φ(0Λn))− (φn|Λ0

n
− φn(0Λn))| ≤ ε,

2. φ ∈ Cu1
Λn,k,ε

and φ ∈ B1
Λn,k

for all k odd,

3. φ ∈ Cu2
Λn,k,ε

and φ ∈ B2
Λn,k

for all k even.

Note that An ⊂ CuΛn,ε. The proof that An ⊂ BΛn is the same as before. We must
again prove (3.10.28). The definition of An implies that |(φΛ∗n − φ(0Λn))− (φn|Λ∗n −
φn(0Λn))| ≤ 2ε for any φ ∈ An, which in turn implies that φΛ∗n is qε-Lipschitz as φn
was q5ε-Lipschitz—see Proposition 3.6.5. Therefore (3.10.29) holds true with e+(·)
replaced by e+

ε (·), which implies (3.10.30). We now have∫
An

e
−

∑
kH

0
Λn,kdλΛn−1 =

∫
{|(φ

Λ0
n
−φ(0Λn ))−(φn|Λ0

n
−φn(0Λn ))|≤ε}

dλΛ0
n−1(φ)

·
∏

k∈2Z+1

∫
C
u1
Λn,k,ε

∩B1
Λn,k

e
−H0

Λn,kdλΛn,k−1 ·
∏
k∈2Z

∫
C
u2
Λn,k,ε

∩B2
Λn,k

e
−H0

Λn,kdλΛn,k−1.
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The first integral equals (2ε)|Λ
0
n|−1, and therefore

log

∫
An

e
−

∑
kH

0
Λn,kdλΛn−1

= (|Λ0
n| − 1) log(2ε)−

∑
k∈2Z+1

PBΛn,k,u1,ε(B
1)−

∑
k∈2Z

PBΛn,k,u2,ε(B
2).

The first term vanishes in the limit in the three variables after normalising by n−d.
The remainder of the proof is the same as before.

Let us now discuss briefly how to deal with ergodic measures with finite specific
free energy which have their slope in ∂UΦ, before proving that PB∗(µ) ≤ H(µ|Φ) for
any shift-invariant random field µ with S(µ) ∈ UΦ.

Definition 3.10.31. Consider a measure µ ∈ PL(Ω,F∇) with finite specific free
energy. Classify µ as taut if wµ-almost surely S(ν) ∈ ∂UΦ, and as non-taut if wµ-
almost surely S(ν) ∈ UΦ. A non-taut approximation of µ is a sequence (µn)n∈N ⊂
PL(Ω,F∇) of non-taut measures such that H(µn|Φ)→ H(µ|Φ) and µn → µ in the
topology of weak local convergence as n→∞.

If E = R and µ a shift-invariant random field with finite specific free energy, then
wµ-almost surely S(ν) ∈ UΦ, due to Theorem 3.4.13 and because H(·|Φ) is strongly
affine. In other words, µ is automatically non-taut. The following lemma is therefore
meaningful for E = Z only.

Lemma 3.10.32. Any ergodic gradient random field with finite specific free energy
has a non-taut approximation.

Proof. Let E = Z, and let µ denote an ergodic random field with H(µ|Φ) < ∞
and S(µ) ∈ ∂UΦ. In this pathological case, we must modify µ slightly, so that the
modified measure is non-taut, and without changing the specific free energy too much.
Let ξ denote another ergodic measure in PL(Ω,F∇) with H(ξ|Φ) < ∞ and with
S(ξ) ∈ UΦ—such measures exist, due to the proof of Theorem 3.4.13 on Page 95.
Write ρn for the uniform probability measure on the set {0, . . . , n− 1}. Fix n ∈ N;
we are going to define a new measure µn. To sample a height function φ from µn,
sample first a triple (φµ, φξ, a) from the measure µ× ξ × ρn. The final sample φ is
then given by the equation

φ := φµ −
⌊

(φµ − φµ(0))− (φξ − φξ(0)) + a

n

⌋
.

The random choice of a makes the rounding operation shift-invariant. Note that the
numerator in this fraction is 2K-Lipschitz almost surely for K minimal subject to
Kd1 ≥ q, and therefore the rounded function is 1-Lipschitz for n sufficiently large. In
fact, the density of edges on which the rounded function is not constant, has a bound
of order O(1/n) as n→∞. In particular, this implies that µn → µ in the topology of
(weak) local convergence. Recall (3.9.6) from the proof of Theorem 3.9.4, and observe
that the specific free energy of µ and µn can be calculated as in this equation because
either measure is K-Lipschitz. If f(p) denotes the entropy function of a Bernoulli
trial with parameter p as in the proof of Lemma 3.10.14, then by arguments similar to
those used in that proof, we can bound the difference in the specific entropy between
µ and µn:

|H(µ|λ)−H(µn|λ)| = O(f(O(1/n))) = o(1)
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as n→∞. For E = Z, we have a lower and upper bound on H{x}(φ) for q-Lipschitz
φ, and this and amenability of the weak interaction Ξ imply that the specific energy
functional

µ 7→ µ(Φ)

is continuous with respect to the topology of local convergence whenever restricted
to shift-invariant random fields which are supported on q-Lipschitz functions. Jointly
these two observations imply that H(µn|Φ) → H(µ|Φ). It suffices to demonstrate
that each measure µn is non-taut. Claim that wµn-almost every ergodic component
ν satisfies S(ν) = (1 − 1

n)S(µ) + 1
nS(ξ) ∈ UΦ. Recall Theorem 3.10.15. The final

assertion of that theorem tells us that the slope S(ν) of each ergodic component can
be read off from almost every sample φ from ν, since the slope u := S(ν) is almost
surely the unique slope such that for any fixed ε > 0,

‖φΠm − φ(0)− u|Πm‖∞ ≤ εm

for m sufficiently large. The slope (1− 1
n)S(µ) + 1

nS(ξ) makes this inequality work
for samples φ from the original measure µn, because µ and ξ are ergodic, and because
φ equals (1− 1

n)φµ + 1
nφ

ξ up to bounded differences.

Lemma 3.10.33. For any µ ∈ PL(Ω,F∇) with S(µ) ∈ UΦ, we have PB∗(µ) ≤
H(µ|Φ).

Proof. Let µ denote an arbitrary shift-invariant random field with H := H(µ|Φ)+1 <
∞ and u := S(µ) ∈ UΦ. If µ is non-taut and a convex combination of finitely many
ergodic random fields, then the lemma follows immediately from Theorem 3.4.1 and
Lemmas 3.10.22 and 3.10.24. Let us now consider the case that µ is non-taut, but
not a convex combination of finitely many ergodic random fields. The lower level set
of the specific free energy MH is a compact Polish space, and therefore there exists a
sequence of continuous cylinder functions (fk)k∈N with fk : Ω→ [0, 1] such that some
sequence (µn)n∈N ⊂MH satisfies µn → µ in the topology of weak local convergence
if and only if µn(fk)→ µ(fk) as n→∞ for every k ∈ N. Write wµ for the ergodic
decomposition of µ. Let (νi)i∈N denote an i.i.d. sequence of samples from wµ. Define

µn :=
∑n

i=1

1
nνi.

Then wµ-almost surely, H(µn|Φ) → H(µ|Φ) and µn(fk) → µ(fk) as n → ∞ for all
k ∈ N. This implies that µn → µ in the topology of weak local convergence. Finally,
we have S(µn)→ u. By altering the coefficients in the definition of each measure µn
slightly, we can make sure that S(µn) = u for n sufficiently large, while retaining the
other properties of this sequence. For each measure µn we have PB∗(µn) ≤ H(µn|Φ)
by the first part of this proof, and PB∗(µ) ≤ H(µ|Φ) because PB∗(·) is lower-
semicontinuous when restricted to {S(·) = u}, while H(µn|Φ)→ H(µ|Φ) as n→∞.

We now prove the lemma for the case that µ is a convex combination of finitely
many ergodic measures, but without imposing that µ is non-taut. Write

µ =
∑n

i=1
aiν

i

for the decomposition of µ into ergodic components. Since each νi is ergodic, it
has a non-taut approximation (νik)k∈N. Define µk :=

∑n
i=1 aiν

i
k, so that µk → µ in

the topology of weak local convergence with H(µk|Φ) → H(µ|Φ) as k → ∞. This
implies also that S(µk) → S(µ), and by altering the coefficients in the definition
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of each measure µk slightly, we may ensure that S(µk) = u for k sufficiently large,
while retaining the previously mentioned properties. By arguing as before, we have
PB∗(µk) ≤ H(µk|Φ) and therefore PB∗(µ) ≤ H(µ|Φ). The generalisation to those
measures µ which are not a convex combination of finitely many ergodic measures
and not non-taut is the same as before.

3.11 Large deviations principle

Large deviations are the subject of a vast literature within statistical physics [12, 11,
49]. In the context of gradient models, the pioneering result was derived by Sheffield
in [54]. In this section we prove a large deviations principle (LDP) of similar strength
to the one contained in Chapter 7 of [54], with the noteworthy difference that we
express it directly in terms of the Gibbs specification. The large deviations principle
applies to all models described in the introduction, including for example perturbed
dimer models [21, 22] which are not monotone, even if the perturbation has infinite
range. This LDP captures both the macroscopic profile of each sample, as well as its
local statistics. We will be using some notations and ideas from [54] and [36]. Recall
Subsection 3.4.2 for a description of good asymptotic boundary profiles and good
approximations. That subsection also contains a description of the topology for the
macroscopic profile of each function. The letter Φ denotes a fixed potential belonging
to the class SL +WL throughout this section.

3.11.1 Formal description of the LDP
Recall Subsection 3.4.2, which gave an overview of the large deviations principle
without local statistics. Throughout this section, the sequence (Dn, bn)n∈N denotes
a good approximation of some fixed good asymptotic boundary profile (D, b). The
sequence of local Gibbs measures which are of interest in the LDP is the sequence
(γn)n∈N defined by γn := γDn(·, bn). We shall also write Zn for ZDn(bn); the normal-
ising constant in the definition of the measure γDn(·, bn). Finally, γ̃n shall denote the
non-normalised version of γn, that is, γ̃n := Znγn.

The topological space

All samples from the sequence of measures (γn)n∈N must be brought to the same
topological space, in order to formulate the large deviations principle. We want our
large deviations principle to describe both the global profile of each sample as well
as its local statistics, and this is reflected in the choice of topological space. More
concretely, the topological space that we have in mind decomposes as the product
of two topological spaces, each describing one of the two aspects of each sample.
Recall from Definition 3.4.8 that (Lip(D̄),X∞) is space of K‖ · ‖1-Lipschitz functions
functions on D̄ endowed with the topology of uniform convergence. Recall also the
definition of Gn; each map Gn is used to map samples from γn to Lip(D̄). This map
characterises the macroscopic profile of each sample.

Next, we define the empirical measure profile Ln(φ) of the sample φ from γn. The
empirical measure profile captures the local statistics of the height function φ in the
large deviations principle.

Definition 3.11.1 (topology for local statistics). Write D for the Borel σ-algebra on
D, and recall thatM(X,X ) denotes the set of σ-finite measures on the measurable
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space (X,X ). Throughout this chapter, we shall writeMD for the set of measures
µ ∈M(D×Ω,D×F∇) which have the property that the first marginal µD = µ(·,Ω)
equals the Lebesgue measure on D. The empirical profile Ln(φ) ∈MD of φ is now
defined by the equation

Ln(φ) :=

∫
D
δ(x,θ[nx]Lφ)dx,

where δ denotes the Dirac measure and [nx]L is the vertex in L closest to nx in the
Euclidean metric—this is well-defined for almost every x with respect to the Lebesgue
measure. Thus, to “sample” from Ln(φ)—this language is abusive because the size of
the measure Ln(φ) is Leb(D) and therefore not generally a probability measure—one
first samples x from D uniformly at random; then one shifts the sample φ by [nx]L.
The map Ln : Ω→MD thus captures the local statistics of the height functions in
the large deviations principle. For the statement of the large deviations principle,
we endow the spaceMD with the topology X L. This is defined to be the weakest
topology which makes the map µ 7→ µ(R, f) continuous for any rectangular subset R
of D, and for any continuous cylinder function f : Ω 7→ [0, 1].

Remark. If φ is a height function, R ⊂ D a bounded convex set of positive Lebesgue
measure, and n large, then

Leb(R)−1Ln(φ)(R, ·) ≈ LΛ(nR)(φ).

More precisely, the total variation distance between the two measures goes to zero as
n→∞, uniformly over the choice of φ.

Definition 3.11.2 (Product topology for the large deviation principle). The large
deviations principle is formulated on the space XP := Lip(D̄)×MD endowed with
the topology XP := X∞ ×XL, and we map each sample φ from γn to this space by
applying the map Pn := Gn × Ln.

The rate function

Before proceeding, a few definitions for measures µ ∈ MD are introduced. The
measure µ is called L-invariant if Leb(U)−1µ(U, ·) ∈ PL(Ω,F∇) for any U ∈ D of
positive Lebesgue measure. WriteMD

L for the set of all such shift-invariant measures.
If µ is L-invariant and U ∈ D has positive Lebesgue measure, then we write S(µ(U, ·))
for the slope of Leb(U)−1µ(U, ·). Call a pair (g, µ) ∈ XP compatible, and write g ∼ µ,
if µ is L-invariant with ∇g(x) = S(µ(x, ·)) as a distribution on D. Finally, write wµ
for the ergodic decomposition of the shift-invariant non-normalised measure µ(D, ·),
and define

H(µ|Φ) := H(µ(D, ·)|Φ) :=

∫
H(ν|Φ)dwµ(ν) = Leb(D)H(Leb(D)−1µ(D, ·)|Φ).

Definition 3.11.3. Consider a good asymptotic boundary profile (D, b). The rate
function associated to this profile is the function I : XP → R ∪ {∞} defined by

I(g, µ) := Ĩ(g, µ)− PΦ(D, b) where Ĩ(g, µ) :=

{
H(µ|Φ) if g|∂D = b and g ∼ µ,
∞ otherwise.

Here PΦ(D, b) denotes the pressure of (D, b), which is given by

PΦ(D, b) := min
g ∈ Lip(D̄) with g|∂D = b

∫
D
σ(∇g(x))dx.
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The function Ĩ is useful because its definition does not appeal to the pressure. It
will later appear as the rate function of the LDP corresponding to the sequence of
measures (γ̃n)n∈N defined by γ̃n := Znγn, the non-normalised versions of the local
Gibbs measures γDn(·, bn).

Lemma 3.11.4. The following hold true:

1. The rate functions I and Ĩ are convex,

2. The rate functions I and Ĩ are lower-semicontinuous,

3. The lower level sets {I ≤ C} and {Ĩ ≤ C} are compact Polish spaces for
C <∞,

4. There is a probability kernel u 7→ µu such that for any u ∈ {σ <∞}, we have
µu ∈ PL(Ω,F∇) with S(µu) = u and H(µu|Φ) = σ(u),

5. For fixed g ∈ Lip(D̄) with g|∂D = b, we have

min
µ∈MD

Ĩ(g, µ) =

∫
D
σ(∇g(x))dx,

6. The minimum of I is 0, and the minimum of Ĩ is PΦ(D, b).

We provide a proof in the next subsection.

Statement of the LDP

Theorem 3.11.5 (Large deviations principle). Let Φ ∈ SL+WL, and let (Dn, bn)n∈N
denote a good approximation of some good asymptotic profile (D, b). Let γ∗n denote the
pushforward of γn := γDn(·, bn) along the map Pn, for any n ∈ N. Then the sequence
of probability measures (γ∗n)n∈N satisfies a large deviations principle with speed nd

and rate function I on the topological space (XP,XP). Moreover, the sequence of
normalising constants (Zn)n∈N := (ZDn(bn))n∈N satisfies −n−d logZn → PΦ(D, g) as
n→∞.

Remark that Theorem 3.4.10 follows immediately from this theorem in combination
with Lemma 3.11.4, Statement 5.

3.11.2 Proof overview

Let us start with a proof of some key properties of the rate functions I and Ĩ.

Proof of Lemma 3.11.4. Note thatMD
L is closed in (MD,X L). It follows immediately

from the properties of the original specific free energy functional (Theorem 3.4.1)
that the map

H(·|Φ) :MD
L → R ∪ {∞}

is affine and lower-semicontinuous, and that its lower level sets are compact Polish
spaces with respect to the X L-topology.

Observe that the set {g ∼ µ} ⊂ XP is convex. This implies that I and Ĩ are
convex, since the map (g, µ) 7→ H(µ|Φ) is affine on {g ∼ µ}. Observe that the set
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{g ∼ µ} is also closed in XP. The lower level sets of I and Ĩ are compact Polish
spaces because

{Ĩ ≤ C} = ({g ∈ Lip(D̄) : g|∂D = b} × {µ ∈MD
L : H(µ|Φ) ≤ C}) ∩ {g ∼ µ},

that is, {Ĩ ≤ C} is as a closed subset of a product of two compact Polish spaces. This
also implies that I and Ĩ are lower-semicontinuous.

The fourth statement is a simple exercise in measure theory; it follows from the
topological properties of the specific free energy stated in Theorem 3.4.1. If g ∼ µ,
then it is clear that

Ĩ(g, µ) =

∫
D
H(µ(x, ·)|Φ)dx ≥

∫
D
σ(S(µ(x, ·)))dx =

∫
D
σ(∇g(x))dx.

For fixed g, this inequality can be turned into an equality, by constructing µ in terms
of ∇g and the kernel from the fourth statement. This proves the fifth statement. The
final statement is now obvious.

Theorem 3.11.5 states the LDP for the sequence of normalised measures (γn)n∈N.
For the proof, however, it will be beneficial to consider also the sequence of non-
normalised measures (γ̃n)n∈N. Write γ̃∗n for the pushforward of γ̃n along Pn. Theo-
rem 3.11.5 is equivalent to the conjunction of the following two statements:

1. The minimum of Ĩ is PΦ(D, b),

2. The sequence (γ̃∗n)n∈N satisfies an LDP with speed nd and rate function Ĩ in
(XP,XP).

The first statement was proven in Lemma 3.11.4. The second statement is somewhat
easier to prove than the original LDP, because it appeals to non-normalised measures
only.

Let us first describe a particular basis for the topological space

(XP,XP) = (Lip(D̄),X∞)× (MD,X L).

As a basis B∞ for X∞, we take the sets of the form

B∞ε (g) := {h ∈ Lip(D̄) : ‖h− g‖∞ < ε}

where g ∈ Lip(D̄) and ε > 0. Write

BL
ε (µ, (Ri)i, (fj)j) := {ν : |µ(Ri, fj)− ν(Ri, fj)| < Leb(Ri)ε for all i, j} ⊂ MD,

where ε > 0, µ is a measure inMD, (Ri)i is a finite collection of closed rectangular
subsets of D, and (fj)j is a finite collection of continuous cylinder functions fj : Ω→
[0, 1]. The collection BL of such sets forms a basis of X L. As a basis BP for XP, we
choose the collection of open sets of the form BP

ε (·, ·, ·, ·) := B∞ε (·)×BL
ε (·, ·, ·).

To prove a large deviations principle, it must first be checked that the rate function
is lower-semicontinuous. For this refer again to Lemma 3.11.4. The large deviations
principle (with non-normalised measures) is now a corollary of the following three
claims:

1. Lower bound on probabilities. For any (g, µ) ∈ A ∈ BP, we have

lim inf
n→∞

n−d log γ̃∗n(A) ≥ −Ĩ(g, µ).
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2. Upper bound on probabilities. For any (g, µ) ∈ XP, we have

inf
A ∈ BP with (g, µ) ∈ A

lim sup
n→∞

n−d log γ̃∗n(A) ≤ −Ĩ(g, µ).

3. Exponential tightness. For all α > −∞, there is a compact set Kα ⊂ XP such
that

lim sup
n→∞

n−d log γ̃∗n(XP rKα) ≤ α

The next subsection contains an auxiliary result on approximations of Lipschitz
functions which is useful for proving the lower bound. Each of the three subsequent
sections addresses one of the three claims formulated above.

3.11.3 Simplicial approximations of Lipschitz function

This subsection is dedicated to providing some results on affine approximations of
Lipschitz functions necessary to prove the lower bound on probabilities. For x ∈ Rd,
the point bxc ∈ Zd is obtained by rounding down each coordinate.

Definition 3.11.6. Let Sd denote the group of permutations on {1, . . . , d}. For
x ∈ R, we write s(x) ∈ Sd for the permutation which rank-orders the coordinate
indices of x− bxc. For x ∈ Zd and s ∈ Sd, we define the simplex C(x, s) to be the
closure of the set

{y ∈ Rd : byc = x, s(y) = s}.

By a simplex of scale ε, we simply mean a scaled simplex of the form εC(x, s). A
simplex domain of scale ε is a union of finitely many simplices of scale ε. If D is a
domain, then write Dε for the largest simplex domain of scale ε contained in D.

Definition 3.11.7. Let D denote a domain, and g a real-valued function on D.
Consider ε > 0. Write Fε = Fε(g) for the unique real-valued function on Dε which
equals g on Dε ∩ εZd, interpolated linearly on each simplex.

We will make use of the simplicial Rademacher theorem proven in [36] for which
we recall a statement here.

Lemma 3.11.8 (Lemma 6.1 from [36]). Consider a positive homogeneous function
‖ · ‖ : Rd → R satisfying the triangle inequality. Let D ⊂ Rd be a domain and
g : D → R a ‖ · ‖-Lipschitz function. For any δ > 0 and any ε > 0 sufficiently small
(depending on δ), we have

1. Leb(D rDε) ≤ δ,

2. ‖Fε − g|Dε‖∞ ≤ δε,

3. Leb({x ∈ Dε : ‖∇Fε(x)−∇g(x)‖2 ≥ δ}) ≤ δ.

Moreover, Fε is ‖ · ‖-Lipschitz for any ε > 0.

The first property is obvious, and the proof of the second and third property is
identical to the proof in [36].
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3.11.4 The lower bound on probabilities

Fix (g, µ) ∈ A ∈ BP and β > 0; the goal of this subsection is to prove that

lim inf
n→∞

n−d log γ̃∗n(A) ≥ −Ĩ(g, µ)− β.

We suppose of course that Ĩ(g, µ) is finite. For the proof, we require the following
result.

Lemma 3.11.9. Consider some fixed ε > 0. Then there exists a sufficiently small
constant α > 0 such that the following statement holds true. Suppose that µ ∈
PL(Ω,F) satisfies u := S(µ) ∈ Ūqε ⊂ Uq, and that v ∈ Uq is another slope with
‖u− v‖2 ≤ α. Then there is another measure ν ∈ PL(Ω,F) such that S(ν) = v and
H(ν|Φ) ≤ H(µ|Φ)+ε and ‖µ−ν‖TV := ‖µ−ν‖∞ < ε. In particular, if f : Ω→ [0, 1]
is measurable, then |µ(f)− ν(f)| < ε.

Proof. Note that σ is bounded uniformly on a neighbourhood A of Ūqε . The proof
of the lemma is straightforward: one simply defines ν := (1− t)µ+ tµ′ for t small
and µ′ some minimiser with S(µ′) ∈ A in order to adjust the slope of the measure of
interest.

Proof of the lower bound on probabilities. It suffices to consider the case that Ĩ(g, µ)
is finite. We claim that it is sufficient to consider the case that g is strictly ‖ · ‖q-
Lipschitz (if E = R) or that g|D is locally strictly ‖ · ‖q-Lipschitz (if E = Z). If g were
not ‖ · ‖q-Lipschitz and g ∼ µ, then µ cannot be supported on q-Lipschitz functions,
and consequently Ĩ(g, µ) =∞. Therefore g must be ‖ · ‖q-Lipschitz. There is some
pair (h, ν) ∈ XP such that h is strictly ‖ · ‖q-Lipschitz (if E = R) or such that h|D is
locally strictly ‖ · ‖q-Lipschitz (if E = Z), and such that Ĩ(h, ν) <∞—this follows
from the definition of a good asymptotic boundary profile and from Lemma 3.11.4.
Define gt := (1− t)g + th and µt := (1− t)µ+ tν. Then (gt, µt) ∈ A for t sufficiently
small and lim supt→0 Ĩ(gt, µt) ≤ Ĩ(g, µ) as Ĩ is convex. Moreover, for any t > 0, the
function gt has the desired properties. Thus, we may replace (g, µ) by (gt, µt) for
small t, by choosing β smaller if necessary. This proves the claim.

The proof follows the general strategy that was outlined after the statement of
Lemma 3.10.24. Let us first consider the case that E = R. We find an appropri-
ate approximation of g using the simplicial Rademacher theorem, and then apply
Lemma 3.11.9 and the limit equalities to obtain the desired lower bound on probabil-
ities. For the approximations, it is necessary to take limits in three variables: first we
take n→∞, then ε2 → 0, and finally ε1 → 0. There is also another variable ε; it is
not necessary to take a limit in this variable, but it must be small for the arguments
to work.

First fix ε > 0 so small that b and g are ‖ · ‖q8ε-Lipschitz, and such that all
functions bn are q8ε-Lipschitz. We also suppose that A = BP

8ε(g, µ, (Ri)i, (fj)j), by
choosing ε and A smaller if necessary, where (Ri)i is a finite family of rectangular
subsets of D, and (fj)j a finite family of continuous cylinder functions fj : Ω→ [0, 1].

Consider some ε1 > 0, and write D′ for the points in D at distance more than ε1

from the complement of D. Consider additionally some ε2 > 0, and write D′′ for D′ε2 :
the largest simplex domain of scale ε2 contained in D′. See Figure 3.5 for a drawing
of this construction. Write F = F (g) for the unique ‖ · ‖q8ε-Lipschitz function on
D′′ which equals g on ε2Zd ∩ D′′, and which is affine on each simplex of D′′. For
ε2 sufficiently small, this function has a ‖ · ‖q7ε-Lipschitz extension F̄ to D̄ which
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D′′

D′

D

Σ r Σ∗

Σ∗

Figure 3.5: The sets D′′ ⊂ D′ ⊂ D ⊂ Rd, and the sets Σ∗ ⊂ Σ of simplices of scale ε2

equals b on ∂D. It is clear that any such extension F̄ is contained in B∞ε (g), that is,
‖F̄ − g‖∞ < ε, for ε1 and ε2 sufficiently small.

Write Σ for the set of simplices of scale ε2 in D′′—this is a finite set. The slope
∇F of F is constant on any ∆ ∈ Σ; write S(∆) ∈ Ūq8ε for this slope. Write Σ∗ for the
set of simplices ∆ ∈ Σ for which ‖S(∆)− S(µ(∆, ·))‖2 ≤ ε1; Lemma 3.11.8 asserts
that |Σ∗|/|Σ| ≥ 1− ε1 for ε2 sufficiently small. See again Figure 3.5 for an example
of the sets Σ and Σ∗.

Choose C minimal subject to ‖φu−u|Zd‖∞+ 1 ≤ C for all u ∈ UΦ. Let M denote
a constant which makes Theorem 3.6.9 work for the local Lipschitz constraint q6ε,
and for the constants ε and C—this constant M depends on ε only. We shall also
suppose that M ≥ R, by choosing M larger if necessary. For ∆ ∈ Σ and n ∈ N,
define ∆n := Λ−M (n∆). Write also D′′n := ∪∆∈Σ∆n and D∗n := ∪∆∈Σ∗∆n. It follows
from the definition of an approximation that D′′n ⊂ Dn for n sufficiently large. By
Theorem 3.6.9 there exists, for any n ∈ N, a q6ε-Lipschitz function Fn : D′′n → E such
that:

1. |Fn(x)− nF (x/n)| ≤ C for all x ∈ D′′n,

2. ∇Fn|∆n = ∇φS(∆)|∆n for all ∆ ∈ Σ.

It is straightforward to see that for n sufficiently large, the function Fn extends to a
q5ε-Lipschitz height function F̄n which equals bn on the complement of Dn.

We now use the existence of the function F̄n to demonstrate that there exists a
set An ∈ F such that Pn(An) ⊂ A, and for which we show that γ̃n(An) is sufficiently
large as n→∞. Define An to be the set of height functions φ which are q-Lipschitz,
and which satisfy the following criteria:

1. If x ∈ Zd rDn, then φ(x) = F̄n(x) = bn(x),

2. If x ∈ Dn rD∗n, then |φ(x)− F̄n(x)| ≤ ε,

3. If x = 0∆n for some ∆ ∈ Σ∗, then |φ(x)− F̄n(x)| ≤ ε,
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4. For each ∆ ∈ Σ∗, we have φ ∈ CS(∆)
∆n,ε

,

5. For each ∆ ∈ Σ∗, we have φ ∈ B∆
∆n

, that is, L∆n(φ) ∈ B∆, where

B∆ := {ν ∈ P(Ω,F∇) : |Leb(∆)ν(fj)− µ(∆, fj)| < Leb(∆)ε for all j} ∈ B.

It suffices to demonstrate that for ε, ε1, and ε2 sufficiently small, and for n sufficiently
large, we have Pn(An) ⊂ A and

lim inf
n→∞

n−d log γ̃n(An) ≥ −I(g, µ)− β.

Claim first that, in the limit, Pn(An) ⊂ A. This is equivalent to asking that
Gn(An) ⊂ B∞8ε (g) and Ln(An) ⊂ BL

8ε(µ, (Ri)i, (fj)j). The former of the two holds
true because ‖F̄ −g‖∞ < ε and because ‖F̄ −Gn(φ)‖∞ is small in the described limit,
uniformly over the choice of φ ∈ An. The proof that Ln(An) ⊂ BL

8ε(µ, (Ri)i, (fj)j) in
the limit relies again on Proposition 3.10.25; observe in particular that in the limit
most of the volume of each fixed rectangle Ri is covered by simplices in Σ∗ which are
entirely contained in Ri.

In the sequel, we shall pretend that An ∈ EDn by restricting each height function
in An to Dn. If φ ∈ EDn , then we write ψ for the height function which restricts to
φ on Dn and to bn on the complement of Dn. We aim to find an asymptotic lower
bound on

n−d log γ̃n(An) = n−d log

∫
An

e−HDn (ψ)dλDn(φ).

If φ ∈ A, then ψ is qε-Lipschitz whenever restricted to Zd r ∪∆∈Σ∗∆
−R
n , because F̄n

is q5ε-Lipschitz and because ψ and F̄n differ by at most 2ε at each vertex in this set.
Therefore the upper attachment lemma (Lemma 3.7.4) implies

HDn(ψ) ≤ H0
DnrD∗n(ψ) + e+

ε (Dn) +
∑

∆∈Σ∗

H0
∆n

(ψ) + e+
ε (∆n)

for any φ ∈ A. For fixed ε, ε1, and ε2, the terms of the form e+
ε (·) in this expression

are of order o(nd) as n → ∞, and therefore we may omit them in calculating the
limit inferior. Moreover, since ψ is qε-Lipschitz on Dn rD∗n, the term H0

DnrD∗n(ψ)

has an upper bound C ′|Dn rD∗n|, where C ′ depends on ε only. In particular,

lim inf
n→∞

n−d log γ̃n(An)

≥ lim inf
n→∞

n−d
[
−C ′|Dn rD∗n|+ log

∫
An

e−
∑

∆∈Σ∗ H
0
∆n

(ψ)dλDn(φ)

]
.

It follows from the definition of An, that the integral decomposes as follows:∫
An

e−
∑

∆∈Σ∗ H
0
∆n

(ψ)dλDn(φ)

=

 ∏
x∈DnrD∗n

∫ F̄n(x)+ε

F̄n(x)−ε
dλ

[ ∏
∆∈Σ∗

∫ F̄n(0∆n )+ε

F̄n(0∆n )−ε
dλ

]
·

·

[ ∏
∆∈Σ∗

∫
C
S(∆)
∆n,ε

∩B∆
∆n

e−H
0
∆ndλ∆n−1

]
,
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and therefore the logarithm of this integral equals

(|Dn rD∗n|+ |Σ∗|) log 2ε−
∑

∆∈Σ∗

PB∆n,S(∆),ε(B
∆).

But |Σ∗| does not depend on n, and by choosing C ′ larger, we obtain

lim inf
n→∞

n−d log γ̃n(An) ≥ lim inf
n→∞

n−d

[
−C ′|Dn rD∗n| −

∑
∆∈Σ∗

PB∆n,S(∆),ε(B
∆)

]
.

It is easy to see that n−d|Dn rD∗n| → Leb(D r ∪Σ∗) as n → ∞. Fix ∆ ∈ Σ∗. By
definition of Σ∗, we have ‖S(∆) − S(µ(∆, ·))‖2 ≤ ε1. Then Lemma 3.11.9 tells us
that for ε1 sufficiently small, the set B∆ contains another shift-invariant measure
ν of slope S(∆) such that H(ν|Φ) ≤ H(Leb(∆)−1µ(∆, ·)|Φ) + ε. In particular, this
means that

lim sup
n→∞

n−d PB∆n,S(∆),ε(B
∆) ≤ Leb(∆)

(
H(Leb(∆)−1µ(∆, ·)|Φ) + ε

)
= H(µ(∆, ·)|Φ) + Leb(∆)ε.

Conclude that

lim inf
n→∞

n−d log γ̃n(An) ≥ −C ′ Leb(D r ∪Σ∗)−H(µ(∪Σ∗, ·)|Φ)− εLeb(∪Σ∗).

As ε2 → 0 and then ε1 → 0, we have

Leb(∪Σ∗)→ Leb(D), Leb(D r ∪Σ∗)→ 0, H(µ(∪Σ∗, ·)|Φ)→ H(µ|Φ).

The desired lower bound is thus obtained by setting ε so small that εLeb(D) < β.
Let us finally describe what changes for E = Z. The first part of the proof is the

same, except that the functions Fn and F̄n are q-Lipschitz, and not q6ε-Lipschitz or
q5ε-Lipschitz. The q-Lipschitz extension F̄n exists for n sufficiently large, because g|D
is locally strictly ‖ · ‖q-Lipschitz. The only thing that changes in the remainder of the
proof is that λ is now the counting measure rather than the Lebesgue measure. This
makes the remainder of the proof easier, exactly as in the proof of Lemma 3.10.24.

3.11.5 The upper bound on probabilities

Proof of the upper bound on probabilities. Let us first consider the case Ĩ(g, µ) <∞,
in which case Ĩ(g, µ) = H(µ|Φ). Let Σ denote a finite set of closed disjoint rectangles,
contained in D. Define Rn := Λ(nR) for R ∈ Σ and Σn := ∪R∈ΣRn, and note that
Σn ⊂ Dn for n sufficiently large. Now choose for each R ∈ Σ an open set BR ∈ B
with µ(R, ·)/Leb(R) ∈ BR, and define

An := ∩R∈ΣB
R
Rn .

It is straightforward to show that (g, µ) has a fixed neighbourhood which is contained
in all sets Pn(An) for n sufficiently large. Fix β > 0. It suffices to find an appropriate
choice for the set of rectangles Σ and the collection of balls (BR)R∈Σ, such that

lim sup
n→∞

n−d log γ̃n(An) ≤ −H(µ|Φ) + β.
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Remove all height functions from An which do not equal bn on Zd rDn or which
are not Kd1-Lipschitz; this obviously does not change the value of γ̃n(An). As in the
proof of the lower bound, we shall sometimes pretend that An ∈ EDn by restricting
each height function in An to Dn. If φ ∈ EDn , then we write ψ for the height function
which restricts to φ on Dn and to bn on the complement of Dn. We are thus interested
in the asymptotic behaviour of

γ̃n(An) =

∫
An

e−HDn (ψ)dλDn(φ).

The lower attachment lemma (Lemma 3.7.1) asserts that

HDn ≥ H0
DnrΣn − e

−(Dn) +
∑
R∈Σ

H0
Rn − e

−(Rn)

≥ −‖Ξ‖ · |Dn r Σn| − e−(Dn) +
∑
R∈Σ

H0
Rn − e

−(Rn).

The terms of the form e−(·) are of order o(nd) as n→∞. Moreover, n−d|DnrΣn| →
Leb(D r ∪Σ) as n→∞, and therefore

lim sup
n→∞

n−d log γ̃n(An)

≤ ‖Ξ‖Leb(D r ∪Σ) + lim sup
n→∞

n−d log

∫
An

e−
∑
R∈ΣH

0
Rn

(ψ)dλDn(φ).

Write D0
n := Dn r ∪R∈Σ(Rn r {0Rn}), so that λDn = λD

0
n ×

∏
R∈Σ λ

Rn−1. Then∫
An

e−
∑
R∈ΣH

0
Rn

(ψ)dλDn(φ) ≤
[∫

Wn

dλD
0
n

][∏
R∈Σ

∫
BRRn

e−H
0
RndλRn−1

]
,

where Wn is the set of Kd1-Lipschitz functions φ : D0
n → E such that φbn|ZdrDn is

also Kd1-Lipschitz. Remark that

log

∫
Wn

dλD
0
n ≤ |D0

n| log(2K + 1)

and that
log

∫
BRRn

e−H
0
RndλRn−1 = −FBRn(BR).

If we write m := ‖Ξ‖+ log(2K + 1), then we have now shown that

lim sup
n→∞

n−d log γ̃n(An) ≤ mLeb(D r ∪Σ)−
∑
R∈Σ

Leb(R) FB(BR).

It now suffices to show that the expression on the right is at most −H(µ|Φ) +β for an
appropriate choice of the set of rectangles in Σ and for the collection (BR)R∈Σ ⊂ B.
By choosing the rectangles in Σ such that they exhaust most of the space, we can
ensure that Leb(Dr∪Σ) ≤ β/2m, and by also taking each ball BR sufficiently small,
we can ensure that

∑
R∈Σ Leb(R) FB(BR) is at least H(µ|Φ)− β/2. This proves the

upper bound on probabilities.
Consider now the case that Ĩ(g, µ) =∞. We distinguish several reasons which

may cause Ĩ(g, µ) to be infinite. If µ is shift-invariant but H(µ|Φ) = ∞, then the

128



proof is the same as before. If µ is not shift-invariant, then there is a closed rectangle
R ⊂ D such that µ(R, ·) is not shift-invariant, and by including R in Σ and using
the free boundary limits for non-shift-invariant measures, we obtain the same result.
In fact, in that case it is readily seen that An is empty for n sufficiently large. (See
also the proof of Lemma 3.10.7).

The remaining cases are: either g|∂D does not equal b, or it is not true that
∇g(x) = S(µ(x, ·)) as a distribution on D. Consider first the case that g|∂D does
not equal b. Choose ε := ‖g|∂D − b‖∞/2. In that case, it is readily seen that
γ̃n(G−1

n (B∞ε (g))) = 0 for n sufficiently large. Finally consider the case that it is
not true that ∇g(x) = S(µ(x, ·)) as a distribution on D. In that case, there is a
closed rectangle R ⊂ D such that the average of ∇g over R does not equal S(µ(R, ·)).
But if Gn(φ) is close to g, then Ln(φ)(R, ·) must have its approximate slope close
to the average of ∇g over R. Note that we use the words approximate slope here
rather than the word slope, because Ln(φ)(R, ·) is not shift-invariant, but it is almost
shift-invariant in the sense that Ln(φ)(R, f − θf) goes to zero uniformly over φ as
n → ∞ for f a bounded continuous cylinder function and θ ∈ Θ(L); see the proof
of Lemma 3.10.7. In particular, by including R in Σ in the previous discussion and
choosing BR sufficiently small, it can again be seen that An is empty for n sufficiently
large, which leads to the desired bound.

3.11.6 Exponential tightness

Proof of exponential tightness. The proof is easy. Fix a positive constant ε > 0, and
let K denote the smallest constant such that Kd1 ≥ q. Define

K∞ε := {g ∈ Lip(D̄) : ‖g|∂D − b‖∞ ≤ ε}, KL := {µ ∈MD : µ(D, ·) is K-Lipschitz}.

It is clear that K∞ε is compact in the topological space (Lip(D̄),X∞), and that the
set KL is compact in (MD,X L). This means that K∞ε ×KL is compact in (XP,XP).
As in the proof of the upper bound of probabilities, we observe that γ̃∗n is supported
on K∞ε × KL for n sufficiently large. This completes the proof; the compact set
that we have found is independent of the choice of α that appeared in the original
formulation of exponential tightness.

3.12 Proof of strict convexity

3.12.1 The product setting

For the proof of strict convexity of σ, it is useful to work in the product setting Ω×Ω,
because one is then able to study the difference φ1 − φ2 of a pair of height functions
(φ1, φ2) and apply the theory of moats from Section 3.5. Almost all constructions
and results in the previous sections generalise to the product setting. An alternative
way of viewing the product setting is by considering a height function to take values
in the two-dimensional space E2 rather than E. This section gives an overview of
the definitions and results for the product setting as required for the proof of strict
convexity of σ.

Write P2(X,X ) for the set of probability measures on (X,X )2 whenever (X,X )
is a measurable space. If µ ∈ P2(X,X ), then write µ1 and µ2 for the marginals of µ
on the first and second space respectively.

129



Definition 3.12.1. The topology of weak local convergence is the coarsest topology
on P2(Ω,F∇) that makes the evaluation map µ 7→ µ(f) continuous for any bounded
continuous cylinder function f on Ω2, that is, a bounded function f : Ω2 → R which is
F∇Λ ×F∇Λ -measurable for some Λ ⊂⊂ Zd, and continuous with respect to the topology
of uniform convergence on Ω2—the set of functions from Zd to E2.

Definition 3.12.2. Write P2
L(Ω,F∇) for the set of L-invariant probability measures

in P2(Ω,F∇); a measure µ ∈ P2(Ω,F∇) is called L-invariant if µ(A×B) = µ(θA×
θB) for any A,B ∈ F∇ and θ ∈ Θ. This is equivalent to asking that (φ1, φ2) and
(θφ1, θφ2) have the same distribution under µ.

Definition 3.12.3. By the slope of µ ∈ P2
L(Ω,F∇) we simply mean the pair of slopes

of the two marginals of µ; S2(µ) := (S(µ1), S(µ2)). The slope functional S2 is clearly
strongly affine, as in the non-product setting.

Definition 3.12.4. For µ ∈ P2(Ω,F∇) and Λ ⊂⊂ Zd, define the free energy of µ in
Λ by

H2
Λ(µ|Φ) := HF∇Λ ×F∇Λ (µ|λΛ−1 × λΛ−1) + µ(H0,Φ

Λ (φ1) +H0,Φ
Λ (φ2)).

Note that we immediately have

H2
Λ(µ|Φ) ≥ HΛ(µ1|Φ) +HΛ(µ2|Φ), (3.12.5)

with equality if and only if the restriction of µ to F∇Λ ×F∇Λ decomposes as the product
of µ1 and µ2, or if either side equals ∞. If µ is L-invariant, then define the specific
free energy of µ by

H2(µ|Φ) = lim
n→∞

n−dH2
Πn(µ|Φ).

It follows immediately from (3.12.5) thatH2(µ|Φ) ≥ H(µ1|Φ)+H(µ2|Φ). In particular,
this implies that H2(µ|Φ) ≥ σ(S(µ1)) + σ(S(µ2)). For convenience, we shall write
σ2(u, v) := σ(u) + σ(v). Note that

σ2(u, v) := inf
µ ∈ P2

L(Ω,F∇) with S2(µ) = (u, v)
H2(µ|Φ).

With these definitions, the following results generalise naturally to the product
setting:

1. Theorem 3.4.1 for existence of the specific free energy,

2. Theorem 3.4.2 for finite energy, where the result applies if

H2(µ|Φ) = σ2(S2(µ)) <∞,

3. Theorem 3.9.1, Proposition 3.9.3, and Theorem 3.9.4 for ergodic decompositions,

4. Theorem 3.10.5 for limit equalities and Theorem 3.11.5 for the large deviations
principle.

Rather than repeating each result here, we state clearly the generalised result that is
used whenever referring to it.
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3.12.2 Moats in the empirical limit
In this section, we suppose that σ is not strictly convex, and construct the pathological
measure which derives from this assumption. Let K denote the smallest real number
such that Kd1 ≥ q, and write ρ for the uniform probability measure on the set
E ∩ [0, 4K), with random variable U . For fixed (φ1, φ2, U) ∈ Ω × Ω × E, we shall
write ξ = ξ(φ1, φ2, U) for the function

ξ :=

⌊
1

4K
(φ1 − φ1(0)− φ2 + φ2(0)− U)

⌋
: Zd → Z.

We will refer to ξ as the difference function associated to the triplet (φ1, φ2, U).
Remark that the law of ∇ξ is L-invariant in µ × ρ for any µ ∈ P2

L(Ω,F); the
random variable U makes the rounding operation shift-invariant as in the proof of
Lemma 3.10.32.

Theorem 3.12.6. Let Φ denote a potential which is monotone and in SL +WL.
Assume that σ is affine on the line segment [u1, u2] connecting two distinct slopes
u1, u2 ∈ UΦ, and set u = (u1 + u2)/2. Select two vertices x ∈ L and y ∈ Zd subject
only to (u1 − u2)(x) 6= 0. Then there exists a product measure µ ∈ P2

L(Ω,F∇) such
that S2(µ) = (u, u) and H2(µ|Φ) = σ2(u, u) = 2σ(u), and such that with positive
µ× ρ-probability, the following two events occur simultaneously:

1. The function ξ is not constant on the set y + Zx,

2. The set {ξ = 0} ⊂ Zd has at least three distinct infinite connected components.

In the next section, we discuss rigorously how to derive a contradiction from this
theorem (under the additional condition whenever E = Z), using Theorem 3.4.2 and
the argument for uniqueness of the infinite cluster of Burton and Keane [4]. The
purpose of the remainder of this section is to prove Theorem 3.12.6.

Let us assume the setting of Theorem 3.12.6: Φ is a monotone potential in
SL +WL, u1 and u2 are distinct slopes in UΦ such that σ is affine on [u1, u2], and
u := (u1 + u2)/2. In the proof of the theorem, we shall suppose that y = 0, without
loss of generality. Fix 0 < ε < K so small that u1, u2 ∈ Uqε . We shall use the large
deviations principle with the good asymptotic profile (D, b) where D := (0, 1)d ⊂ Rd
and b := u|∂D, and with the good approximation (Dn, bn)n∈N of (D, b) defined by
Dn := Πn and bn := φu for all n ∈ N. As per usual, we write γn := γDn(·, bn), and
we shall also write γ2

n := γn × γn.
Set t = 1/2, and recall the definitions of the slope v and the functions p and pα

from the proof of Lemma 3.10.24 (Page 114). Fix ε1, ε2, and ε3 strictly positive and
consider n ∈ N. When taking limits we shall take first n → ∞, then ε3 → 0, then
ε2 → 0, and finally ε1 → 0; it is again convenient to work on different scales. Define
D′ := (ε1, 1 − ε1)d ⊂ D and D′n := nD′ ∩ Zd. Write Hk for the affine hyperplane
{2v = kε2} ⊂ Rd. Note that the sets (Hk)k∈Z correspond to the hyperplanes where
the gradient of pε2 changes. For k even, pε2 equals u on Hk. For k odd, pε2 equals
u+ ε2/4 on Hk. Finally, write

Hn,k := {x ∈ Zd : d2(x, nHk) ≤ nε3},
D0
n := (∪k∈2ZHn,k) ∩Dn,

D+
n := (∪k∈2Z+1Hn,k) ∩D′n.

See Figure 3.6 for an overview of this construction.
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∝ nε2 ∝ nε3

Dn D′n D0
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Λn,k

∆n,k z Lz

Figure 3.6: Several constructions in Subsection 3.12.2

Proposition 3.12.7. Assume the setting of Theorem 3.12.6. If E = Z, then there is
a δ > 0 such that

n−d log γn(φD0
n

= φuD0
n
and φD+

n
≥ φu

D+
n

+ nδε2) = o(1)

in the limit of n, ε3, ε2, and ε1. If E = R and ε > 0, then there is a δ > 0 such that

n−d log γn(|φD0
n
− φuD0

n
| ≤ ε and φD+

n
≥ φu

D+
n

+ nδε2) = o(1)

in the limit of n, ε3, ε2, and ε1.

Proof. In fact, we shall demonstrate that any δ < 1/4 works. Write f for the smallest
‖ · ‖qε-Lipschitz function which satisfies f ≥ u and which equals pε2 on D′. This
function is well-defined and equals u on Rd rD for ε2 sufficiently small (depending
only on ε1).

The pressure PΦ(D, b) is equal to σ(u) because σ is convex, b = u|∂D, and
Vol(D) = 1. Moreover,

∫
D σ(∇f(x))dx tends to σ(u) in the limit of ε1 and ε2,

because σ is affine on the line segment connecting u1 and u2, and because the
gradient of f equals u1 on roughly half of D, and u2 on roughly the other half of
D with respect to Lebesgue measure. Note that σ(∇f) is bounded uniformly as
f is ‖ · ‖qε-Lipschitz. This means that for any ε′ > 0, which is allowed to depend
arbitrarily on ε1 and ε2, we have

n−d log γn(G−1
n (B∞ε′ (f))) = o(1)

in the limit of n, ε2, and ε1.
Note that for ε3 and ε′ sufficiently small depending on ε1 and ε2, all height

functions φ ∈ G−1
n (B∞ε′ (f)) satisfy φD+

n
≥ φu

D+
n

+ nδε2 (by virtue of the choice of
f). Moreover, φD0

n
and φuD0

n
must be close for such φ. By repeating arguments of

the proof of the lower bound on probabilities in the large deviations principle, it is
straightforward to see that conditioning further on the exact values of φD0

n
(up to

ε in the continuous case) does not decrease the value of the limit of the normalised
probabilities. In particular, this implies the proposition.
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By interchanging the role of u1 and u2, one obtains the same result as in Proposi-
tion 3.12.7, now with the inequality sign ≥ replaced by ≤, and with nδε2 replaced
by −nδε2. By appealing to both the original proposition and the version with
replacements, one deduces immediately the following proposition.

Proposition 3.12.8. Assume the setting of Theorem 3.12.6. If E = Z, then there
exists a δ > 0 such that

n−d log γ2
n((φ1 − φ2)D0

n
= 0 and (φ1 − φ2)D+

n
≥ nδε2) = o(1)

in the limit of n, ε3, ε2, and ε1. If E = R and ε > 0, then there is a δ > 0 such that

n−d log γ2
n(|(φ1 − φ2)D0

n
| ≤ 2ε and (φ1 − φ2)D+

n
≥ nδε2) = o(1)

in the limit of n, ε3, ε2, and ε1.

Recall Section 3.5 on moats; we are now ready to apply the theory developed
there. If k is odd with Hn,k ∩D′n nonempty, then write Λn,k := Hn,k ∩D′n. Note that
D+
n = ∪kΛn,k. Write also ∆n,k for the connected component of Dn rD0

n containing
Λn,k; see Figure 3.6 for an example of the sets Λn,k and ∆n,k. Write Ean(m) for
the event that each connected component ∆n,k contains a sequence of dme nested
4K, 4K + a-moats of (φ1 − φ2,Λn,k).

Lemma 3.12.9. Assume the setting of Theorem 3.12.6. For any a ≥ 4K, there is a
δ > 0 such that

n−d log γ2
n(Ean(nδε2)) = o(1)

in the limit of n, ε3, ε2, and ε1.

Proof. This follows immediately from the previous proposition and from Proposi-
tion 3.5.11. Note that the prefactor which appears on the left in (3.5.5) is of order
nO(1/ε2)·O(nδε2), because distances are bounded by n, there are at most O(1/ε2) sets
Λn,k, and because we enforce nδε2 moats around each set Λn,k. In particular, keeping
all constants other than n fixed, the logarithm of this term is of order O(n log n),
which disappears in the normalisation because we normalise by n−d with d ≥ 2.

Proof of Theorem 3.12.6. Let us consider a configuration (φ1, φ2) ∈ Ean(nδε2), and
focus on the collection of moats of f := φ1 − φ2. Fix x ∈ L with u1(x)− u2(x) 6= 0,
and define L := Zx and LN := {−N, . . . , N}x. Write L̄N for a path through the
square lattice of minimal length traversing all the vertices in LN . Draw some vertex
z from L ∩ Dn uniformly at random, and write Lz := L + z, LzN := LN + z, and
L̄zN := L̄N + z. We are interested in the line Lz, and the way this line intersects the
moats of f . We make a series of important geometrical observations. By saying that
a quantity is uniformly positive, we mean that it has a strictly positive lower bound
which is independent of the four parameters, for n sufficiently large and for ε3, ε2,
and ε1 sufficiently small.

1. If a is at least (4 ∨ 2m)K, then the d1-distance from the inside to the outside
of a fixed climbing or descending 4K, 4K + a-moat is at least bmc + 1, as
f is 2K-Lipschitz (See Proposition 3.5.3, Statement 3). If m ≥ d1(0, x) and
if LzN intersects both the inside and outside of some moat, then LzN must
also intersect that moat. In particular, if Lz intersects Λn,k, then Lz must
necessarily also intersect all moats surrounding Λn,k. In the sequel, we choose
a′ := (4 ∨ 2d1(0, x))K and a = 3a′.
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2. With uniformly positive probability, z lies in ∆n,k with Lz intersecting Λn,k,
for some odd integer k. This is illustrated by Figure 3.6; it is important here
that (u1 − u2)(x) 6= 0 so that x does not lie in the hyperplane {u1 − u2 = 0}.
Let us suppose that such an odd integer k indeed exists. Write m± for the
smallest and largest integer respectively such that z + m±x ∈ ∆n,k. Then
m+ −m− ≤ O(nε2), where the constant is independent of all four parameters.
But ∆n,k contains a sequence of dnδε2e nested 4K, 4K + a-moats of Λn,k; Lz

intersects each one of them. These moats thus have a uniformly positive density
in the set z+{m−, . . . ,m+}x. But z was chosen uniformly random from L∩Dn

and therefore we may rerandomise its position within z+{m−, . . . ,m+}x. Since
the moats are disjoint from one another and have a positive density within this
set, we observe there exists a fixed constant N ∈ N such that LzN intersects at
least five distinct nested moats with uniformly positive probability. In fact, each
4K, 4K + a-moat contains a 4K, 4K + a′-moat (Proposition 3.5.3, Statement 7),
and z is contained in such a moat with uniformly positive probability. Therefore,
the event that LzN intersects at least five distinct nested 4K, 4K + a-moats, and
simultaneously f(z) ∈ [4K, 4K + a′), has uniformly positive probability.

3. Let us mention a first consequence of the event described above. Since LzN
intersects more than three distinct 4K, 4K+a-moats, it must intersect both the
inside and outside of the middle moat. This moat contains both a 4K, 4K + a′-
moat, as well as a 4K + 2a′, 4K + 3a′-moat, which LzN must both intersect.
The value of f differs by at least a′ ≥ 4K on these two moats. In particular,
ξ = ξ(φ1, φ2, U) cannot be constant on LzN , regardless of the value of U .
Similarly, ξ(θzφ1, θzφ2, U) cannot be constant on LN .

4. Let us mention a second consequence. Since the set LzN intersects five distinct
nested 4K, 4K+a-moats, it must intersect both the inside and the outside of the
three middle moats. Fix U ∈ [0, 4K), and write a′′ := f(z)+U ∈ [4K, 4K+2a′).
The set L̄zN must intersect three a′′, a′′ + 4K-moats: each of the three middle
4K, 4K + a-moats contains a a′′, a′′ + 4K-moats which L̄zN must also intersect.
But these three moats correspond exactly to connected components of {ξ = 0}
for ξ := ξ(θzφ1, θzφ2, U), which are intersected by L̄N . We must however limit
ourselves to local observations, as we always work in the topology of (weak) local
convergence. Write therefore Σm := {−m, . . . ,m}d ⊂⊂ Zd; we only consider m
so large that L̄N ⊂ Σm. The previous observation means that for any m ∈ N,
{ξ = 0} ∩ Σm has three connected components which intersect both L̄N and
∂1Σm, at least if n is sufficiently large—this is because each moat must surround
some set Λn,k, which grows large whenever n is large.

Let us summarise what we have done so far. We proved that there exist constants
N ∈ N and δ′ > 0 with the following properties. Choose (φ1, φ2) ∈ Ean(nδε2), and
choose z ∈ L ∩Dn uniformly at random. Then for fixed m ∈ N, the probability that
for any U ∈ [0, 4K),

1. ξ := ξ(θzφ1, θzφ2, U) is not constant on LN ,

2. {ξ = 0} ∩ Σm has three connected component which intersect both L̄N and
∂1Σm,

is at least δ′, for n sufficiently large depending on m, and for ε3, ε2, and ε1 small.
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In the final part of the proof, we use this intermediate result, as well as the large
deviations principle and compactness of the lower level sets MC of the specific free
energy, to construct the desired measure for Theorem 3.12.6.

Let us first consider the case E = Z. Consider m ∈ N so large that L̄N ⊂ Σm,
and write Am ∈ F∇Σm × F

∇
Σm

for the event that for any U ∈ [0, 4K), the function
ξ := ξ(φ1, φ2, U) is not constant on LN , and that {ξ = 0} ∩ Σm has three connected
components intersecting both ∂1Σm and L̄N . Write Bm for the set of measures
µ ∈ P2(Ω,F∇) such that µ(Am) > δ′/2. Note that Bm is in the basis for the
tolopogy of weak local convergence on the space of product measures P2(Ω,F∇).
Recall the definition of Ln(φ) in Subsection 3.11.1, and define, for the product setting,

L2
n(φ1, φ2) :=

∫
D
δ(x,θ[nx]Lφ1,θ[nx]Lφ2)dx ∈MD

2 ,

where by MD
2 we mean the set of measures in M(D × Ω × Ω,D × F∇ × F∇) for

which the first marginal equals the Lebesgue measure on D. By Lemma 3.12.9 and
the intermediate result, we know that

n−d log γ2
n(L2

n(D, ·) ∈ Bm) = o(1)

as n→∞. It therefore follows from the large deviations principle that B̄m contains
a shift-invariant measure µm ∈ P2

L(Ω,F∇) with S2(µm) = (u, u) and H2(µm|Φ) ≤
2σ(u). In particular, this means that µm(Am) ≥ δ′/2, and in fact µm(Am′) ≥ δ′/2
for all m′ ≤ m because Am ⊂ Am′ for m′ ≤ m. By compactness of the lower level
sets of the specific free energy, the sequence (µm)m∈N has a subsequential limit
µ ∈ P2

L(Ω,F∇) in the topology of local convergence which satisfies S2(µ) = (u, u)
and H2(µ|Φ) ≤ 2σ(u). In particular, µ(Am) ≥ δ′/2 for all m, which means that
µ satisfies all the requirements of Theorem 3.12.6; the intersection ∩mAm of the
decreasing sequence (Am)m∈N is precisely the event that {ξ = 0} has three infinite
level sets which intersect L̄N , regardless of the value of U .

In the case that E = R, there is a slight complication. If E = R, then the indicator
1Am is not continuous with respect to the topology of uniform convergence on Ω2, and
therefore the sets Bm as defined above are not in the basis of the topology of weak
local convergence. Introduce therefore the sequence of functions (fm,k)k∈N where each
function fm,k : Ω2 → [0, 1] is defined by fm,k(φ1, φ2) := 0 ∨ (1− kd∞(Am, (φ1, φ2)));
here d∞ denotes the metric corresponding to the norm ‖ · ‖∞ on Ω2. Write Bm,k for
the set of product measures µ such that µ(fm,k) > δ′/2. Then Bm,k is in the basis of
the topology of weak local convergence, and we have

n−d log γ2
n(L2

n(D, ·) ∈ Bm,k) = o(1)

as n → ∞. Therefore B̄m,k contains a measure µm,k with S2(µm,k) = (u, u) and
H2(µm,k|Φ) ≤ 2σ(u). Moreover, the sequence of measures (µm,k)k∈N must have a
subsequential limit µm in the topology of local convergence, and this limit must satisfy
H2(µm|Φ) ≤ 2σ(u), S2(µm) = (u, u), and µm(fm,k) ≥ δ′/2 for all k. The dominated
convergence theorem says that µm(Ām) = µm(1Ām) = µm(limk fm,k) ≥ δ′/2. But
µm(∂Am) = 0, since µm has finite specific free energy and is therefore locally absolutely
continuous with respect to the Lebesgue measure. In particular, µm(Am) ≥ δ′/2.
Take now a subsequential limit of the sequence (µm)m∈N for the desired measure.
For this last step, it is important that the topology of local convergence and the
topology of weak local convergence coincide on the lower level sets of the specific free
energy.
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3.12.3 Application of the argument of Burton and Keane
In this subsection we prove Theorem 3.4.12, which is equivalent to the conjunction
of Theorem 3.12.13 and Theorem 3.12.14. Recall the definition of ρ and ξ in the
previous subsection.

Lemma 3.12.10. Let Φ denote any potential in SL +WL, and consider a measure
µ ∈ P2

L(Ω,F∇). Then one of the following properties must fail:

1. µ is ergodic and at least one of S(µ1) and S(µ2) lies in UΦ,

2. µ is a minimiser in the sense that H2(µ|Φ) = σ2(S2(µ)) <∞,

3. With positive µ× ρ-probability, {ξ = 0} has at least three infinite components.

The proof uses a construction which also appears in the part in Chapter 4 on
strict convexity.

Proof of Lemma 3.12.10. For a fixed configuration (φ1, φ2, U), a trifurcation box is
a finite set Λ ⊂⊂ Zd such that for some a ∈ Z, the set {ξ = a} r Λ has three
infinite connected components, which are contained in a single connected component
of {ξ = a}. If µ is shift-invariant then almost surely µ× ρ has no trifurcation boxes,
due to the argument of Burton and Keane [4]. Note that it is important for this
statement that the gradient of ξ is shift-invariant in µ× ρ. To arrive at the desired
contradiction, we aim to prove that trifurcation boxes occur with positive probability
for the measure µ described in the statement of the lemma.

Write Ω2
q for the set of pairs of q-Lipschitz height functions. The natural adaptation

of Theorem 3.4.2 to the product setting asserts that

1Ω2
q
(λΛ × λΛ × µπZdrΛ)× ρ� µ× ρ (3.12.11)

for any Λ ⊂⊂ Zd, where by µπZdrΛ we mean the product measure µ restricted to the
vertices in the complement of Λ, as in the non-product setting. Therefore it suffices
to demonstrate that trifurcation boxes occur with positive measure in the measure
on the left in the display, for some Λ ⊂⊂ Zd.

Suppose, without loss of generality, that S(µ1) ∈ UΦ. Write Σn for the set
{−n, . . . , n}d ⊂⊂ Zd, for any n ∈ N. Then for some fixed n ∈ N, three infinite
components of {ξ = 0} intersect Σn with positive µ× ρ-probability. Moreover, as µ
is ergodic with S(µ1) ∈ UΦ, we observe that the two functions

(φ1 ± 8nK)|Σnφ1|ZdrΣN
(3.12.12)

are q-Lipschitz with high µ-probability as N → ∞. This is due to Lemma 3.6.1,
Theorem 3.10.15 and because S(µ1) ∈ UΦ—recall for comparison the pyramid con-
struction from the proof of Lemma 3.10.14. In particular, for N ≥ n sufficiently large,
the µ × ρ-probability that three infinite components of {ξ = 0} intersect Σn and
simultaneously the two functions in (3.10.14) are q-Lipschitz, is positive. Now choose
x ∈ L such that 0 6∈ ΣN + x, and write Σ′n := Σn + x and Σ′N := ΣN + x. Due to
shift-invariance, have now proven that with positive µ× ρ-probability, Σ′n intersects
three connected components of {ξ = a} for some a ∈ Z, and the two functions
in (3.12.12) are q-Lipschitz for Σn and ΣN replaced by Σ′n and Σ′N respectively. Let
us write A for this event.
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Let us first discuss the discrete setting E = Z. If (φ1, φ2, U) ∈ A, then there
exists another q-Lipschitz function φ′1 ∈ Ω which equals φ1 on the complement of Σ′N ,
and such that {ξ = a} ∪ Σ′n ⊂ {ξ′ = a} where ξ′ := (φ′1, φ2, U). In particular, this
means that Σ′N is a trifurcation box for ξ′. For example, one can take φ′1 to be the
smallest q-Lipschitz extension of φ1|ZdrΣ′N

to Zd which equals at least

φ2 + 4Ka+ U + (φ1(0)− φ2(0))

on {ξ = a}∪Σ′n. This proves that the event that Σ′N is a trifurcation box has positive
measure in the measure on the left in (3.12.11) if we choose Λ = Σ′n. If E = R, then
we must show that not only such a q-Lipschitz function φ′1 exists, but also that the
set of such functions φ′1 has positive Lebesgue measure. The original measure µ has
finite specific free energy and therefore almost surely the height functions φ1 and φ2

are not taut, that is, for every Λ ⊂⊂ Zd there almost surely exists a positive constant
ε > 0 such that the restriction of φ1 and φ2 to Λ are qε-Lipschitz. Now choose Λ
so large that Σ′N ⊂ Λ−R, choose ε at least so small that S(µ1) ∈ Uqε , and construct
the initial height function φ′1 such that it is also qε-Lipschitz. It is easy to see that
one can employ the remaining flexibility granted by Proposition 3.6.5, Statement 3
to demonstrate that the set of of suitable height functions has positive Lebesgue
measure.

Theorem 3.12.13. Let Φ denote a potential which is monotone and in SL +WL. If
E = R, then σ is strictly convex on UΦ.

Proof. Let µ denote the measure from Theorem 3.12.6, and write wµ for its ergodic
decomposition. The measure µ satisfies H2(µ|Φ) = σ2(S2(µ)) <∞, and both H2(·|Φ)
and S2(·) are strongly affine. This implies that wµ-almost every measure ν satisfies
H2(ν|Φ) = σ2(S2(ν)) <∞. Since E = R, this implies also that S(ν1), S(ν2) ∈ UΦ.

With positive wµ-probability, the ν × ρ-probability that {ξ = 0} has at least
three distinct infinite connected components, is positive. We have now proven the
existence of a measure which satisfies all criteria of Lemma 3.12.10. This is the
desired contradiction.

Theorem 3.12.14. Let Φ denote a potential which is monotone and in SL +WL.
Consider now the discrete case E = Z. Suppose that σ satisfies the following property:
for any affine map h : (Rd)∗ → R such that h ≤ σ, the set {h = σ} ∩ ∂UΦ is convex.
Then σ is strictly convex on UΦ. In particular, σ is strictly convex on UΦ if at least
one of the following conditions is satisfied:

1. σ is affine on ∂UΦ, but not on ŪΦ,

2. σ is not affine on [u1, u2] for any distinct u1, u2 ∈ ∂UΦ such that [u1, u2] 6⊂ ∂UΦ.

Proof. Suppose that σ satisfies the property in the statement. Let h : (Rd)∗ → R
denote an affine map such that h ≤ σ, and such that the set {h = σ} ∩ UΦ contains
at least two slopes. We aim to derive a contradiction.

Let us first cover the case that {h = σ} ⊂ UΦ. Let µ denote the measure from
Theorem 3.12.6, with slope S(µ) = (u, u) for some u ∈ {h = σ}. Write wµ for the
ergodic decomposition of µ. Then wµ-almost surely S(ν1), S(ν2) ∈ {h = σ} ⊂ UΦ,
and therefore the proof is the same as for the real case.

Let us now discuss the case that {h = σ} intersects ∂UΦ. Recall Lemma 3.6.1.
Since {h = σ} ∩ ∂UΦ is convex, this intersection must be contained in the boundary
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of one of the half-spaces H = H(p) contributing to the intersection in Lemma 3.6.1,
where p = (pk)0≤k≤n is a path of finite length through (Zd,A) with pn − p0 ∈ L. Set
y := p0 and x := pn− p0. If a shift-invariant measure in PL(Ω,F∇) has finite specific
free energy and its slope in ∂H(p), then the random function φ must satisfy

φ(y + kx)− φ(y) = kq(p) := k
n∑
k=1

q(pk−1, pk) (3.12.15)

for any k ∈ Z almost surely. As x is orthogonal to ∂H(p), it is straightforward to
find two distinct slopes u1, u2 ∈ {h = σ} ∩ UΦ such that (u1 − u2)(x) 6= 0.

Let µ denote the measure from Theorem 3.12.6, and write wµ for its ergodic
decomposition. The measure µ satisfies H2(µ|Φ) = σ2(S2(µ)), and both H2(·|Φ)
and S2(·) are strongly affine. This implies that wµ-almost every measure ν satisfies
H2(ν|Φ) = σ2(S2(ν)) <∞. We know that wµ-almost surely S(ν1) and S(ν2) lie in
{h = σ} ⊂ ŪΦ, but it is not guaranteed that these slopes lie in UΦ.

With positive wµ-probability, the ν×ρ-probability that ξ is not constant on y+Zx
and that {ξ = 0} has at least three distinct infinite connected components, is positive.
But if ξ is not constant on y+Zx, then (3.12.15) is false for φ having the distribution
of either ν1 or ν2, or both, and consequently at least one of S(ν1) and S(ν2) does not
lie in ∂H(p). Conclude that with positive wµ-probability, at least one of S(ν1) and
S(ν2) lies in UΦ, and the ν × ρ-probability that {ξ = 0} has three or more infinite
connected components, is positive. We have now proven the existence of a measure
which satisfies all criteria of Lemma 3.12.10. This is the desired contradiction.

3.13 Applications

3.13.1 The Holley criterion
Each time we apply the theory, we must verify that the specification associated to
the model of interest is monotone. An interesting property of stochastic monotonicity
is that it does not depends on any formalism and can be checked through the Holley
criterion. This criterion is usually stated in the context of the Ising model or Fortuin-
Kasteleyn percolation (see for example [25]) but can be extended to random surfaces
in a straightforward way. Throughout this section, we will use this criterion in
combination with Theorem 3.4.12 to prove the strict convexity of the surface tension
for various interesting models.

Theorem 3.13.1 (Holley criterion). The potential Φ ∈ SL +WL is monotone if and
only if for any two q-Lipschitz functions φ, ψ ∈ Ω with φ ≤ ψ and for any x ∈ Zd, we
have

γ{x}(·, φ) � γ{x}(·, ψ).

Proof. Choose φ and ψ as in the statement of the theorem, and consider Λ ⊂⊂ Zd.
We aim to demonstrate that

γΛ(·, φ) � γΛ(·, ψ).

Write κΛ for the probability kernel associated with Glauber dynamics, that is,

κΛ := |Λ|−1
∑
x∈Λ

γ{x}.
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It is clear under the assumption of the theorem that κΛ preserves the partial order �
on q-Lipschitz measures. Claim now that

µκnΛ → µγΛ

in the strong topology as n → ∞ for any q-Lipschitz probability measure µ; this
would indeed imply the theorem. This is a standard fact in probability theory. The
only detail requiring attention is that it is necessary for any q-Lipschitz function
φ, that γΛ(·, φ)-almost every height function ψ is accessible from φ by local moves,
that is, by updating the value of φ by one vertex in Λ at a time, and such that all
intermediate functions are also q-Lipschitz. This is straightforward to check from
the definition of q—in particular, it is important that q(x, y) + q(y, x) > 0 for any
x, y ∈ Zd distinct.

3.13.2 Submodular potentials

A potential Φ is said to be submodular if for every Λ ⊂⊂ Zd, ΦΛ has the property
that

ΦΛ(φ ∧ ψ) + ΦΛ(φ ∨ ψ) ≤ ΦΛ(φ) + ΦΛ(ψ).

Sheffield proposes this family of potentials as a natural generalisation of simply
attractive potentials, and asks if similar results as the ones proved for simply attractive
potentials in [54] could be proved for finite-range submodular potentials. It is easy to
see that submodular potentials generate monotone specifications.

Lemma 3.13.2. A submodular potential is monotone.

Proof. Let φ1, φ2 ∈ Ω denote q-Lipschitz functions with φ1 ≤ φ2. It suffices to check
the Holley criterion (Theorem 3.13.1). Write fi for the Radon-Nikodym derivative of
γ{x}(·, φi)π{x} with respect to λ, for i ∈ {1, 2}. It suffices to demonstrate that f1λ �
f2λ as measures on (E, E). Submodularity of Φ implies that f1(b)f2(a) ≤ f1(a)f2(b)
for λ × λ-almost every a, b ∈ E with a ≤ b. It is a simple exercise to see that this
implies the desired stochastic domination.

If E = R and Φ a submodular Lipschitz potential fitting the framework of
this thesis (which is a very mild requirement), then we derive immediately from
Theorem 3.4.12 that the surface tension is strictly convex.

Corollary 3.13.3. Suppose that E = R and consider a submodular Lipschitz potential
Φ ∈ SL +WL. Then σ is strictly convex on UΦ.

In the remainder of this section, we focus on the case E = Z. If E = Z, then
we cannot immediately conclude that the surface tension is strictly convex, because
we must fulfill the additional condition in Theorem 3.4.12. We demonstrate how to
derive this extra condition for many natural discrete models. Let (A, q) denote the
local Lipschitz constraint associated with the potential of interest and fix R ∈ N
minimal subject to d1(x, y) ≤ R for all {x, y} ∈ A.

A measure µ ∈ PL(Ω,F∇) is called frozen if for any Λ ⊂⊂ Zd, the values of the
random function φΛ in µ depend deterministically on the boundary values φ∂RΛ. Call
a local Lipschitz constraint freezing if any measure µ ∈ PL(Ω,F∇) which is supported
on q-Lipschitz functions, and which has S(µ) ∈ ∂UΦ, is frozen. This condition on the
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local Lipschitz constraint implies that any such measure has zero specific entropy,
that is, H(µ|λ) = 0. Indeed, deterministic dependence implies that

HF∇Πn (µ|λΠn−1) = HF∇
∂RΠn

(µ|λ∂RΠn−1) = O(nd−1) = o(nd)

as n→∞.

Lemma 3.13.4. If the local Lipschitz constraint (A, q) is invariant by the full lattice
L = Zd, then it is freezing. In particular, the local Lipschitz constraints corresponding
to dimer models, the six-vertex model, and Kd1-Lipschitz functions for K ∈ N, are
freezing.

Proof. Fix µ ∈ PL(Ω,F∇) with S(µ) ∈ ∂UΦ and supported on q-Lipschitz functions.
As in the proof of Theorem 3.12.14, there is a path p = (pk)0≤k≤n of finite length
through (Zd,A) with x := pn − p0 ∈ Lr {0}, such that

φ(p0 + y + kx)− φ(p0 + y)

is deterministic in µ for any y ∈ L and k ∈ Z. Moreover, this path is a cycle lift as
defined in the proof of Lemma 3.6.1. Since L = Zd, this means that φ(y + kx)− φ(y)
is deterministic for any y ∈ Zd, and that d1(0, x) ≤ R. In particular, φΛ depends
deterministically on φ∂RΛ in µ for any Λ ⊂⊂ Zd.

The final goal of this section is to prove the following theorem.

Theorem 3.13.5. Suppose that E = Z, and that Φ ∈ SL +WL is a submodular
Lipschitz potential with a freezing local Lipschitz constraint. Then the associated
surface tension σ is strictly convex on UΦ.

We first prove two auxiliary lemmas.

Lemma 3.13.6. If E = Z and Φ a submodular gradient potential, then

ΦΛ(dφ1+φ2

2 e) + ΦΛ(bφ1+φ2

2 c) ≤ ΦΛ(φ1) + ΦΛ(φ2)

for any φ1, φ2 ∈ Ω and Λ ⊂⊂ Zd.

Proof. Write ξ± := φ1 ± φ2, so that φ1 = (ξ+ + ξ−)/2 and φ2 = (ξ+ − ξ−)/2. Write

F (ψ+, ψ−) := ΦΛ(ψ
++ψ−

2 ) + ΦΛ(ψ
+−ψ−

2 )

for any ψ+, ψ− ∈ Ω with ψ+ + ψ− ≡ 0 mod 2. For example, the right hand side of
the display in the statement of the lemma equals F (ξ+, ξ−), and the left hand side
equals F (ξ+, p ◦ ξ−), where p : Z → {0, 1} is the parity function which maps even
integers to 0 and odd integers to 1. Therefore it suffices to demonstrate that

F (ψ+, p ◦ ψ−) ≤ F (ψ+, ψ−)

for any ψ+, ψ− ∈ Ω with ψ+ + ψ− ≡ 0 mod 2.
Observe that F has the following four properties:

1. Translation invariance: F (ψ+ + a1, ψ
− + a2) = F (ψ+, ψ−) for any a1, a2 ∈ Z

with a1 + a2 even, because Φ is a gradient specification,

2. Inversion invariance: F (ψ+,−ψ−) = F (ψ+, ψ−); replacing ψ− by −ψ− corre-
sponds to interchanging the sum and difference of ψ+ and ψ−,
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3. Submodularity : F (ψ+, |ψ−|) ≤ F (ψ+, ψ−); equivalent to submodularity of Φ,

4. Locally measurable: F (ψ+, ψ−) depends on ψ±Λ only.

By applying the three operations on the pair (ψ+, ψ−) finitely many times, one can
turn the original pair into a new pair (ψ+, ψ̂−), where ψ̂−Λ = (p ◦ ψ−)Λ. In particular,
since each operation can only decrease the value of F , we have

F (ψ+, p ◦ ψ−) = F (ψ+, ψ̂−) ≤ F (ψ+, ψ−)

as desired.

Corollary 3.13.7. Suppose that E = Z and that Φ ∈ SL +WL is submodular. If
µ1, µ2 ∈ PL(Ω,F∇) are ergodic, then there exists an ergodic measure ν ∈ PL(Ω,F∇)
with

S(ν) =
S(µ1) + S(µ2)

2
and 〈ν|Φ〉 ≤ 〈µ1|Φ〉+ 〈µ2|Φ〉

2
.

Proof. Write µ̂ ∈ PL(Ω,F∇) for the following measure: to sample from µ̂, sample first
a pair (φ1, φ2) from µ1 × µ2, and sample X from {0, 1} independently and uniformly
at random; the final sample ψ from µ̂ is now defined by

ψ :=

{
dφ1−φ1(0)+φ2−φ2(0)

2 e if X = 0,
bφ1−φ1(0)+φ2−φ2(0)

2 c if X = 1.

Since φ1 − φ1(0) and φ2 − φ2(0) are asymptotically close to S(µ1) and S(µ2) respec-
tively in the measure µ1 × µ2 in the sense of Theorem 3.10.15, it is clear that ψ is
asymptotically close to (S(µ1) + S(µ2))/2 in µ̂ (see also the proof of Lemma 3.10.32).
In particular, S(ν) = (S(µ1) + S(µ2))/2 for wµ̂-almost every ν in the ergodic decom-
position of µ̂. By the previous lemma, we have

〈µ̂|Φ〉 ≤ 〈µ1|Φ〉+ 〈µ2|Φ〉
2

.

As 〈·|Φ〉 is strongly affine, we have 〈ν|Φ〉 ≤ 〈µ̂|Φ〉 with positive wµ̂-probability. This
proves the existence of the desired measure ν.

Lemma 3.13.8. Consider the case that E = Z, Φ a potential in SL +WL, and µ an
ergodic minimiser with S(µ) ∈ UΦ. Then H(µ|λ) < 0.

Proof. Suppose that µ does have zero combinatorial entropy; we aim to derive a
contradiction. Write u := S(µ), and write µ̂ ∈ P2

L(Ω,F∇) for the unique measure
which has µ as its first marginal, and in which φ1 and φ2 are equal almost surely.
Then S2(µ̂) = (u, u) and H2(µ̂|Φ) = 2〈µ|Φ〉 = 2H(µ|Φ) = σ2(S2(µ̂)) < ∞, that is,
µ̂ is a minimiser in the product setting. The adaptation of Theorem 3.4.2 to the
product setting implies that

1Ω2
q
(µ̂πZdrΛ × λΛ × λΛ)� µ̂

for any Λ ⊂⊂ Zd, where Ω2
q is the set of pairs of q-Lipschitz height functions. However,

since µ is ergodic with slope in UΦ, we can find some Λ ⊂⊂ Zd such that with positive
µ̂-probability φ1|ZdrΛ has more than a single q-Lipschitz extension to Zd. This
contradicts that φ1 and φ2 are almost surely equal in µ̂.
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We are now ready to prove the second main theorem of this section.

Proof of Theorem 3.13.5. Recall Theorem 3.4.12. If σ is not strictly convex, then
there is an affine map h : (Rd)∗ → R with h ≤ σ and such that {h = σ} ∩ ∂UΦ is not
convex. Write H for the exposed points of {h = σ} ⊂ (Rd)∗ which are also in ∂UΦ.
Then the convex envelope of H intersects UΦ.

Note that each slope in H is also an exposed point of σ. This means that for each
slope in H, there is an ergodic minimiser µ of that slope. Moreover, since H(µ|λ) = 0
for any µ with S(µ) ∈ H ⊂ ∂UΦ, we must have 〈µ|Φ〉 = h(S(µ)) = σ(S(µ)) for any
such measure µ. The fact that the convex envelope of H intersects UΦ, together
with Corollary 3.13.7, implies that there exists an ergodic measure µ ∈ PL(Ω,F∇)
with S(µ) ∈ UΦ and 〈µ|Φ〉 ≤ h(S(µ)) ≤ σ(S(µ)). But it is only possible that
〈µ|Φ〉 ≤ σ(S(µ)) if 〈µ|Φ〉 = σ(S(µ)) and if µ is a minimiser with H(µ|λ) = 0. This
contradicts Lemma 3.13.8.

3.13.3 Tree-valued graph homomorphisms
The flexibility of the main theorem in this chapter can also be used to prove statements
about the behaviour of random functions taking values in target spaces other than
Z and R. A noteworthy example is the model of tree-valued graph homomorphisms
described in [44]. Let k ≥ 2 denote a fixed integer, and let Tk denote the k-regular
tree, that is, a tree in which every vertex has exactly k neighbours. In this context,
tree-valued graph homomorphisms are functions from Zd to the vertices of Tk which
also map the edges of the square lattice to the edges of the tree. Regular trees are
natural objects in several fields of mathematics: in group theory, for example, they
arise as Cayley graphs of free groups on finitely many generators. As a significant
result in [44], the authors characterise the surface tension for the model (there named
entropy) and show that it is equivalent to the number of graph homomorphisms with
nearly-linear boundary conditions. In this section we will confirm the conjecture
from [44], which states that this entropy function is strictly convex. We must first show
how the model and the corresponding surface tension fit into the framework of this
thesis. A tree-valued graph homomorphism can be represented by an integer-valued
graph homomorphism after introducing an infinite-range potential to compensate for
the “loss of information”.

Let us first introduce some definitions. Write dTk for the graph metric on Tk.
Let g denote a fixed bi-infinite geodesic through Tk, that is, a Z-indexed sequence
of vertices g = (gn)n∈Z ⊂ Tk such that dTk(gn, gm) = |m− n| for any n,m ∈ Z. Let
p : Tk → Z denote the projection of the tree onto g, defined such that p(x) minimises
dTk(x, gp(x)) for any x ∈ Tk. Write h for the horocyclic height function on Tk; this
is the function h : Tk → Z defined by h(x) := p(x) + dTk(x, gp(x)) (see also [26]). In
other words, if x = gn for some n ∈ Z, then h(x) = n, and h increases by one every
time one moves away from the geodesic g. The function h can also be characterised
as follows: each vertex x ∈ Tk has a unique neighbour y such that h(y) = h(x)− 1,
and h(z) = h(x) + 1 for every other neighbour z of x.

The graphs Zd, Z, and Tk are bipartite, we shall call the two parts the even
vertices and odd vertices respectively; the set of even vertices is the part containing
0 if the graph is Zd or Z, and the part containing g0 if the graph is Tk. By a graph
homomorphism we mean a map from Zd to Z or Tk which preserves the parity of
the vertices, and which maps edges to edges. Write Ω and Ω̃ respectively for the
set of graph homomorphisms from Zd to either Z or Tk. For fixed φ ∈ Ω and n ∈ Z,
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The gradient of the graph homomorphism The boundaries of the upper level sets

Figure 3.7: A random T3-valued graph homomorphism

we call some set Λ ⊂⊂ Zd an n-upper level set if Λ is a connected component of
{φ ≥ n} ⊂ Zd in the square lattice graph. An n-upper level set is also called an
n-level set or simply a level set.

Write U for the set of slopes u ∈ (Rd)∗ such that |u(ei)| < 1 for each element ei in
the natural basis of Rd. For fixed u ∈ Ū , write φu ∈ Ω for the graph homomorphism
defined by

φu(x) := bu(x)c+

{
0 if d1(0, x) ≡ bu(x)c mod 2,
1 if d1(0, x) ≡ bu(x)c+ 1 mod 2,

and write φ̃u ∈ Ω̃ for the graph homomorphism defined by φ̃u(x) = gφu(x).
It is shown in Section 3 of [44] that the entropy function Ent : Ū → [− log k, 0]

associated to the model of graph homomorphisms from Zd to Tk can be estimated
by counting for each slope u ∈ Ū the number of graph homomorphisms φ : Zd → Tk
which equal φ̃u on the complement of Πn. More precisely, for u ∈ Ū , we have

Ent(u) = lim
n→∞

−n−d log |{φ̃ ∈ Ω̃ : φ̃ZdrΠn = φ̃uZdrΠn
}|.

Notice that counting the number of functions in this set is similar to considering
the normalising constant in the definition of the specification, as we frequently do in
this chapter. Before proceeding, let us already remark that Ent(u) = 0 for u ∈ ∂U .
Indeed, for such u, the set in the display contains only a single element: the original
function φ̃u. It is also easy to see that Ent is not identically zero on Ū . Consider,
for example, the slope u = 0, and consider the set of all graph homomorphisms φ̃
which equal φ̃u on the complement of Πn and which map all the even vertices of the
square lattice to g0 ∈ Tk. Then this set contains at least kbnd/2c functions, proving
that Ent(u) ≤ −1

2 log k < 0.
We now get to the heart of the case. Let us use the horocyclic height function

to count the set in the previous display in a different way. Suppose that some
graph homomorphism φ ∈ Ω equals φu on the complement of Πn. How many graph
homomorphisms φ̃ ∈ Ω̃ do there exist which satisfy h ◦ φ̃ = φ and equal φ̃u on the
complement of Πn? It turns out that this number must be precisely (k − 1)FΠn (φ),

143



where FΛ(φ) denotes the number of level sets of φ which are entirely contained in Λ,
for any Λ ⊂⊂ Zd. Indeed, each time we see an n-level set of φ, the function φ̃ must
be constant on the outer boundary of that n-level set—say with value x ∈ Tk—and
there are k − 1 neighbours of x which lead to an increase of the horocyclic height
function by exactly one. In particular, we have

Ent(u) = lim
n→∞

−n−d log
∑

φ∈Ω, φZdrΠn
=φu

ZdrΠn

(k − 1)FΠn (φ). (3.13.9)

See Figure 3.7 for a sample of the model, with the gradient of the graph homomorphism
on the left, and with the boundaries of the level sets of the horocyclic height function
on the right. We have now reduced to a problem expressed entirely in terms of
integer-valued functions. In fact, we do no longer require k to be an integer, although
we do require that k ≥ 2. In the remainder of this section, we construct a potential Φ
which fits into our class SL +WL and which is monotone, and such that UΦ = U and
σ = Ent. This proves that σ and Ent are strictly convex on UΦ = U . In fact, the
specification induced by the potential that we construct is not perfectly monotone,
but we shall demonstrate that it is sufficiently monotone for us to deduce that σ is
strictly convex.

Unfortunately, we cannot hope to use a potential that counts the level sets directly.
The reason is that there is no upper bound on the number of level sets containing
a single point; such a potential would always sum to infinity. However, each finite
level set has a uniquely defined outer boundary, and each vertex is contained in only
finitely many outer boundaries. This means that counting outer boundaries of finite
level sets is equivalent to counting finite level sets, and the potential that does so is
well-defined and fits our framework, as we will show. It is not possible through this
method to count infinite level sets, but we shall demonstrate how to work around
this apparent difficulty.

We shall now describe how to characterise the outer boundary of a finite level set.
This is not entirely straightforward due to the connectivity properties of the square
lattice. By the ∗-graph on Zd, we mean the graph in which two vertices x and y are
neighbours if and only if ‖x− y‖∞ = 1. For example, each vertex has 3d − 1 distinct
∗-neighbours. On every single occasion that we mention a graph-related notion, we
mean the usual square lattice graph, unless we explicitly mention the ∗-graph. Due
to the connectivity properties of the square lattice, we have the following proposition.

Proposition 3.13.10. Suppose that Λ ⊂⊂ Zd is finite and connected, and that its
complement ∆ := Zd r Λ is ∗-connected. Define ∂∗∆ to be the set of vertices x ∈ Zd
such that:

1. Either x ∈ Λ = Zd r ∆ and ∗-adjacent to ∆,

2. Or x ∈ ∆ and adjacent to Λ = Zd r ∆.

Then ∂∗∆ ∩ Λ = ∂∗∆ ∩ (Zd r ∆) is connected, and so is ∂∗∆.

Consider a finite nonempty connected set Λ ⊂⊂ Zd. Write Λ∞ for the outside of
Λ, that is, the unique unbounded ∗-connected component of the complement of Λ.
Write also Λ̄ for the complement of Λ∞: this set is finite and connected, and contains
Λ. The pair (Λ̄,Λ∞) will play the role of (Λ,∆) in the previous proposition. The set
∂∗Λ∞ can obviously be written as the disjoint union of ∂∗Λ∞ ∩ Λ∞ and ∂∗Λ∞ ∩ Λ̄.
Claim that ∂∗Λ∞ ∩ Λ̄ = ∂∗Λ∞ ∩ Λ. Indeed, if x ∈ ∂∗Λ∞ ∩ Λ̄ is not in Λ, then it
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should be in Λ∞ as it is ∗-adjacent to Λ∞; this proves the claim. This also means
that all vertices in ∂∗Λ∞ ∩ Λ∞ are adjacent to Λ.

Suppose now that Λ is also an n-level set of some graph homomorphism φ ∈ Ω.
Then φ must equal exactly n − 1 on ∂∗Λ∞ ∩ Λ∞, and φ must be at least n on
∂∗Λ∞ ∩ Λ̄ = ∂∗Λ∞ ∩ Λ. We have now proven the following lemma.

Lemma 3.13.11. Suppose that ∆ ( Zd is ∗-connected and cofinite, with its comple-
ment connected. Then

{φ ∈ Ω : ∆ is the outside of a n-level set of φ for some n ∈ Z}
= {φ ∈ Ω : φ∂∗∆∩∆ = n− 1 and φ∂∗∆r∆ ≥ n for some n ∈ Z} ∈ F∇∂∗∆.

Moreover, no two level sets of φ produce the same outside boundary ∂∗∆.

Define the potential Ξ = (ΞΛ)Λ⊂⊂Zd by

ΞΛ(φ) = − log(k − 1)

if Λ = ∂∗∆∞ for some finite level set ∆ of φ, and ΞΛ(φ) = 0 otherwise. For fixed
x ∈ Zd and φ ∈ Ω, there are at most 3d finite level sets ∆ of φ such that x ∈ ∂∗∆∞.
In particular, this means that ‖Ξ‖ ≤ 3d log(k − 1). Moreover, since ΞΛ ≡ 0 whenever
Λ ⊂⊂ Zd is not connected, it is clear that e−(Λ) ≤ |∂Λ| · ‖Ξ‖. In particular, e−

is an amenable function, which means that Ξ ∈ WL. Remark that HΞ
Λ(φ) equals

− log(k − 1) times the number of finite level sets ∆ of φ for which ∂∗∆∞ intersects
Λ. Unfortunately, it is not possible to count infinite level sets with this construction;
this is a small inconvenience that we must circumvent.

Write Ψ for the potential which forces graph homomorphisms, that is, ΨΛ(φ) =∞
if Λ = {x, y} is an edge of the square lattice and |φ(y)−φ(x)| 6= 1, and ΨΛ(φ) = 0 oth-
erwise. This potential belongs to SL, modulo the detail explained in Subsection 3.4.4,
which we shall simply ignore here.

Lemma 3.13.12. For any integer k ≥ 2, the surface tension σ associated to the
potential Φ := Ψ + Ξ equals the entropy function Ent.

Proof. We prove that σ(u) = Ent(u) for u ∈ UΦ, the result extends to all u ∈ ŪΦ

because both σ and Ent are continuous on ŪΦ. Due to Theorem 3.4.10, we know that

σ(u) = PΦ((0, 1)d, u|∂(0,1)d) = lim
n→∞

−n−d log

∫
EΠn

e
−HΦ

Λ (ψφu
ZdrΠn

)
dλΠn(ψ)

= lim
n→∞

−n−d log
∑

φ∈Ω, φZdrΠn
=φu

ZdrΠn

e−H
Ξ
Πn

(φ).

But the logarithm of the ratio of e−H
Ξ
Πn

(φ) with (k − 1)FΠn (φ) is of order O(nd−1) =
o(nd) uniformly over φ as n → ∞, so that the equality σ(u) = Ent(u) follows
from (3.13.9).

Definition 3.13.13. Write Ω− for the set of graph homomorphisms φ ∈ Ω which
have no infinite level sets.

Lemma 3.13.14. The specification induced by the potential Φ := Ψ + Ξ is stochasti-
cally monotone over Ω− for any k ≥ 2.
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Proof. We use the Holley criterion (Theorem 3.13.1) to prove that γΛ preserves �;
we suppose that Λ = {0} without loss of generality. Let φ1, φ2 ∈ Ω− denote graph
homomorphisms without infinite level sets, and which satisfy φ1 ≤ φ2. Notice that
the only case where the local Gibbs measure γΛ(·, φ) is not a Dirac measure, is if
there exist a n ∈ Z such that φ(x) = n for any neighbour x of 0. If this is not the case
for φ1 or φ2 then the proof is trivial; we reduce to the case that φ1(x) = φ2(x) = 1 for
any neighbour x of 0 in Zd. It remains to show that γΛ(·, φ1) � γΛ(·, φ2). Without
loss of generality, φ1(0) = φ2(0) = 0.

Write ψ for the random function in either local Gibbs measure. Since φi(x) = 1
for any neighbour x of 0 and for i ∈ {1, 2}, the function ψ can only take two values
with positive probability: they are 0 and 2. What we thus must show is that the
quantity

ai :=
γΛ(ψ(0) = 2, φi)

γΛ(ψ(0) = 0, φi)

satisfies a1 ≤ a2. Claim that ai = (k − 1)2−Xi , where Xi is the number of 1-level
sets of φi which are adjacent to 0. If ψ(0) = 0, then all 1-level sets adjacent to 0
are counted separately, and {0} is not a level set. If ψ(0) = 2, then we count two
level sets: the set {0} is a 2-level set, and all neighbours of 0 are contained in the
same 1-level set. All other level sets remain unaffected. This proves the claim. We
must therefore prove that X1 ≥ X2. This is clear: increasing the values of φ can
only increase the size of the 1-level set containing a fixed vertex x, and potentially
merge several 1-level sets. In particular, it can only decrease the number of 1-level
sets adjacent to 0.

Theorem 3.13.15. The surface tension σ associated to the potential Φ defined above,
is strictly convex on UΦ whenever k ≥ 2.

Proof. We must circumvent the problem that the specification γ induced by Φ is
monotone only after restricting it to the set Ω−. Remark that Theorem 3.5.4 and
Proposition 3.5.11 remain true in this context if the measure µ in the statement of
Theorem 3.5.4 is supported on Ω−. The only time that monotonicity is used in the
proof for strict convexity of σ, is in the application of these two results in Lemma 3.12.9.
Recall that the local Gibbs measure γn in the statement of Lemma 3.12.9 was defined
to be γΠn(·, φu); this is now problematic because φu does have infinite level sets.
This can be easily solved by the following modification. Define φun to be the smallest
graph homomorphism which equals φu on the set Πn ∪ ∂Πn. It is easy to check that
{φun ≥ m} is finite for any n ∈ N and m ∈ Z; in particular, φun ∈ Ω−. Moreover, the
sequence (Πn, φ

u
n)n∈N is as much an approximation of ((0, 1)d, u|∂(0,1)d) as the original

sequence (Πn, φ
u)n∈N. In particular, all of the same arguments apply if we simply

replace each local Gibbs measure γn = γΠn(·, φu) by γΠn(·, φun). We had already seen
that σ = 0 on ∂UΦ and σ(0) < 0, which proves that σ is strictly convex.

3.13.4 Stochastic monotonicity in the six-vertex model
Consider the two-dimensional square lattice. An arrow configuration is an orientation
of each edge of the square lattice, in such a way that each vertex has exactly two
incoming edges and two outgoing edges. This means that there are six configurations
for the four edges incident to a fixed vertex; see Figure 3.8. Each of these six types
receives a weight, and one studies the probability measure where the probability of
observing an arrow configuration is proportional to the product of the weights over

146



a+ a− b+ b− c+ c−

Figure 3.8: The six types of arrow configurations and their weights

the vertices in that configuration. This is the six-vertex model, which is the subject
of an extensive literature. Each arrow configuration has an associated height function,
which assigns integers to the faces of the square lattice, and is defined as follows: the
height of the face to the right of an arrow is always exactly one more than the height
of the face to the left of it, and the height of a fixed reference face is set to zero. It is
straightforward to see that this uniquely defines the height functions associated to an
arrow configuration. The six-vertex model can thus be considered a Lipschitz random
surface. Our main theorem asserts that the surface tension of this random surface
model is strictly convex, if the specification is monotone. It is a straightforward
exercise to demonstrate that the specification is monotone if and only if

c+c− ≥ max{a+a−, b+b−};

this is verified through checking the Holley criterion (Theorem 3.13.1). Informally,
this means that the specification is monotone if the model prefers vertices for which
the four values of the adjacent faces are as close to each other as possible. Finally,
we should mention that from the perspective of the specification, there is some
gauge equivalence in the choice of the six weights; for details we refer to the work of
Sridhar [55, Section 2.2].

Theorem 3.13.16. The potential Φ ∈ SL corresponding to the six-vertex model is
monotone if and only if c+c− ≥ max{a+a−, b+b−}, in which case σ is strictly convex
on UΦ.

Although it is not directly stated in Random Surfaces [54], the potential Φ can
be written as a simply attractive potential whenever c+c− ≥ max{a+a−, b+b−}.
Therefore this theorem should be considered an alternative proof rather than a novel
result.
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Chapter 4
A generalisation of the honeycomb
dimermodel to higher dimensions

Linde, Moore, and Nordahl introduced a generalisation of the honeycomb dimer model
to higher dimensions. The purpose of this chapter is to describe a number of structural
properties of this generalised model. First, it is shown that the samples of the model
are in one-to-one correspondence with the perfect matchings of a hypergraph. This
leads to a generalised Kasteleyn theory: the partition function of the model equals the
Cayley hyperdeterminant of the adjacency hypermatrix of the hypergraph. Second, we
prove an identity which relates the covariance matrix of the random height function
directly to the random geometrical structure of the model. This identity is known
in the planar case but is new for higher dimensions. It relies on a more explicit
formulation of Sheffield’s cluster swap which is made possible by the structure of the
honeycomb dimer model. Finally, we use the special properties of this explicit cluster
swap to give a new and simplified proof of strict convexity of the surface tension in
this case.

4.1 Introduction

4.1.1 Background

Random models on shift-invariant Euclidean graphs such as the square lattice and
the hexagonal lattice form a well-known subject of study in both combinatorics
and statistical physics [25]. There are several integrable models which allow for a
quantitative analysis. In the integrable setting, the focus is on deriving quantitative
results concerning (asymptotics of) partition functions and correlation functions.
Examples of such models are the Ising model [45, 61], ice-type models [40, 57, 62],
and the dimer model [28, 59], see also [2]. These quantitative estimates in turn imply
qualitative results, for example (non)uniqueness of shift-invariant Gibbs measures,
and (when the samples are height functions) strict convexity of the surface tension.
Sometimes it is possible to derive qualitative results even in the absence of quantitative
estimates. Georgii [20] provides an excellent overview for the theory of Gibbs measures
for general (non-integrable) models, and Sheffield [54] derives many key results for
models of height functions in the gradient setting, including strict convexity of the
surface tension in any dimension.

The focus of this chapter is a natural generalisation of the hexagonal dimer model
(Figure 4.1c) to arbitrary dimension. The generalised model first appeared in the
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Figure 4.1: Dimension d = 2; projections onto H of several representations:

(a) As a stepped surface or lozenge tiling,

(b) As a height function on the simplicial lattice (Xd, Ed),

(c) As a dimer cover or perfect matching of the dual hexagonal lattice.

work of Linde, Moore, and Nordahl [41]. It also belongs to the category of models
under consideration in the thesis of Sheffield [54]. A great deal is known about the
original two-dimensional dimer model: we mention three pivotal developments. The
mathematical study of dimers was initiated by Kasteleyn, Temperley, and Fisher.
Kasteleyn [28] and Temperley and Fisher [59] independently calculated the number
of perfect matchings of an n×m grid or, equivalently, the number of domino tilings
of an n×m rectangle. Kasteleyn [29, 30] later showed that the number of perfect
matchings of any bipartite planar graph equals the determinant of a matrix that
is closely related to the adjacency matrix of the concerned graph. Cohn, Kenyon,
and Propp [5] proved the variational principle for domino tilings; the scope of their
article includes the hexagonal dimer model. Remarkably, a closed-form solution
for the surface tension is found, something that is not to be expected in higher
dimensions. Their derivation of the closed-form formula relies on a bijection between
dimer configurations and height functions, together with an original application of
the Kasteleyn theory. Kenyon, Okounkov, and Sheffield [34] establish a bijection
between the set of accessible slopes and the set of ergodic Gibbs measures. They
furthermore classify the ergodic Gibbs measures into three categories (frozen, liquid,
and gaseous) which describe qualitatively the behaviour of the random surface. Their
paper contains many more qualitative and quantitative results.

4.1.2 The honeycomb dimer model in dimension d ≥ 2

Let (Xd, Ed) denote the graph obtained from the square lattice Zd+1 by identifying
vertices which differ by an integer multiple of the vector n := e1 + · · ·+ ed+1. This
graph is called the simplicial lattice; its vertices are equivalence classes of vertices
of the square lattice. Let Ω denote the set of functions f : Xd → Z which have the
property that f(0) ∈ (d+1)Z and f([x+ei])−f([x]) ∈ {−d, 1} for any x ∈ Zd+1 and
1 ≤ i ≤ d+ 1. Functions in Ω are called height functions—see Figure 4.1b. The set Ω
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is in bijection with the set of stepped surfaces in Rd+1. Informally, a stepped surface
is a union of unit hypercubes with integer coordinates, such that each hypercube
is well-supported, and such that there is no overhang. Stepped surfaces are related
directly to the three-dimensional interpretation of the familiar picture of lozenge
tilings for d = 2, see Figure 4.1a. Each stepped surface is furthermore associated
with a tiling of the hyperplane orthogonal to n; this tiling is essentially obtained
by projecting the exposed faces of the hypercubes of the stepped surface onto this
hyperplane. These bijections are all introduced in the work of Linde, Moore, and
Nordahl [41].

In this chapter we are interested in the model of uniformly random height functions
whenever fixed or periodic boundary conditions are enforced. For fixed boundary
conditions, it is also possible to consider more general Boltzmann measures, in the
spirit of the classical planar dimer model. The purpose of this chapter is to point out
a number of structural properties of the generalised model which lead to new results.

4.1.3 The double dimer model and the cluster swap
For the double dimer model, one superimposes two dimer configurations of the same
graph. The union of two such dimer covers decomposes into a number of isolated
edges which appear in both dimer covers, called double edges, and a number of closed
loops of even length, where each edge of the loop is contained in exactly one of the
original dimer covers. If the distribution of the two dimer configurations is uniformly
random, subject say to fixed boundary conditions, then the orientation of each loop
is uniformly random in its two states. More precisely, this means that for each
loop, one can flip a fair coin to decide if each dimer should change the configuration
that it belongs to, without changing the distribution of the product measure. Many
results have been obtained for the double dimer model: see the work of Kenyon and
Pemantle [31, 35] for the relevant literature.

Sheffield introduces cluster swapping in the seminal monograph Random sur-
faces [54]. The technique employs the same idea of considering two configurations—
height functions, in this case—at once, then identifying and resampling independent
structures. The cluster swap applies to simply attractive potentials, that is, models
of height functions which are induced by a convex nearest-neighbour potential. The
setup is much more intricate than for the original double dimer model. To compensate
for the possible change in potential, one first identifies a ferromagnetic Ising model,
then achieves independence through the Edwards-Sokal representation [13] which in
turn derives from the Swendsen-Wang update [58]. The cluster swap applies directly
to the heights of the two height functions; it is not an operation on their gradients.

4.1.4 Main results
First, we develop a new construction, the cluster boundary swap, for the generalised
model. This cluster boundary swap is entirely analogous to the resampling operation
in the double dimer model. In particular, the difference of two uniformly random
height functions decomposes as a geometrical structure consisting of boundaries—
which generalise loops—and double edges, and, conditional on this structure, a number
of fair coin flips, one for the orientation of each boundary. Moreover, the operation
directly manipulates the gradients of the two height functions, which works to our
advantage. The name cluster boundary swap is chosen intentionally, as it should be
considered a special case of the cluster swap, adapted and optimised for the special
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geometrical structure that is present in the generalisation of the honeycomb dimer
model to higher dimensions. The author is not aware of a similar construction for
any other model in dimension d > 2; in particular, no generalisation is known for the
dimer model on the two-dimensional square lattice.

Second, we use the cluster boundary swap to obtain an identity which relates the
covariance matrix of the random height function f to the geometrical structure of
the model. We prove that the variance of f at a vertex x ∈ Xd is exactly 1

2(d+ 1)2

times the expectation of the number of boundaries separating x from infinity in the
product measure. The identity makes sense for fixed boundary conditions only, but it
does apply to general Boltzmann measures (which includes the uniform probability
measure). Similarly, for x,y ∈ Xd, we prove that the covariance between f at x and
y equals 1

2(d+ 1)2 times the number of boundaries that separate both x and y from
infinity. This identity is new and was previously known, to our knowledge, only for
two-dimensional dimer models.

Third, we prove that the set of tilings, as introduced in [41], are in one-to-one
correspondence with the perfect matchings of a hypergraph which is the natural dual
of the simplicial lattice (Xd, Ed). This hypergraph is d!-regular and d!-partite, in the
sense that there is a partition of its vertex set into d!-parts, such that each hyperedge
contains exactly one vertex in each part. We derive a generalised Kasteleyn theory:
we prove that the partition function of any Boltzmann measure equals the Cayley
hyperdeterminant of the adjacency hypermatrix of this hypergraph. It is well-known
that no Kasteleyn weighting is necessary for the Kasteleyn theory on the hexagonal
lattice. We prove the same here: we may take the adjacency hypermatrix without
modifications as our Kasteleyn hypermatrix.

Finally, we use the special properties of the cluster boundary swap—relative
to the more general cluster swap—to greatly streamline the proof in [54] for strict
convexity of the surface tension. Note that strict convexity of the surface tension for
d = 2 was first derived in [5] by means of an explicit calculation. Strict convexity
of the surface tension is important, because it implies that the model is stable on a
macroscopic scale. The macroscopic behaviour of the model is described by a large
devations principle, which in turn implies a variational principle—these are due to
generic arguments which do not require that the surface tension is strictly convex. If
the surface tension is strictly convex, however, then the rate function in the large
deviations principle has a unique minimiser, and consequently the random height
function concentrates around a unique limit shape. See [5, 33, 32] for the variational
principle in the original dimer setting.

4.1.5 Structure of the chapter
Section 4.2 formally introduces the model, and gives an overview of the several repre-
sentations of each sample. These constructions derive directly from [41]. Section 4.3
describes the probability measures under consideration, by enforcing fixed or periodic
boundary conditions. We construct the cluster boundary swap in Section 4.4. In
Section 4.5, we state and prove the identity for the covariance structure of the random
height function, and Section 4.6 contains the generalised Kasteleyn theory. The
purpose of the remainder of the chapter is to motivate and prove the result of strict
convexity of the surface tension. In Section 4.7 we introduce gradient Gibbs measures,
which play an important role in the proof, but which are also interesting in their own
right. Section 4.8 motivates the result: it introduces the surface tension, and describes
how it is related to the large deviations principle and the variational principle. Strict

152



convexity of the surface tension is finally proven in Section 4.9.

4.2 Stepped surfaces, tilings, height functions
Linde, Moore, and Nordahl [41] observed that each sample of the model has three
natural representations. The purpose of this section is to give an overview of these
representations, and to state or derive some basic properties. For details, refer to [41].
Throughout this chapter, d ≥ 2 denotes the fixed dimension that we work in.

4.2.1 Stepped surfaces

Informally, a stepped surface is a union of unit hypercubes with corners in Zd+1. The
hypercubes must be properly stacked without overhang—recall for this notion the
familiar picture of lozenge tilings, which corresponds to d = 2. If a hypercube is
present at some coordinate x ∈ Zd+1, then we require the presence of a hypercube
at x − ei for every 1 ≤ i ≤ d + 1; this indeed ensures that every hypercube is
well-supported, and excludes overhang.

The formal definition is as follows. If x,y ∈ Rd+1, then write x ≤ y whenever
xi ≤ yi for all i. A set A ⊂ Rd+1 is called closed under ≤ whenever x ∈ A and y ≤ x
implies y ∈ A. Write L(A) for the closure of a set A ⊂ Rd+1 under ≤, that is,

L(A) := {y ∈ Rd+1 : y ≤ x for some x ∈ A}.

A stepped surface is a strict nonempty subset of Rd+1 of the form L(A) for some
A ⊂ Zd+1. Let Ψ denote the set of stepped surfaces. If F is a stepped surface, then
write V (F ) for the set ∂F ∩Zd+1. The set V (F ) should be thought of as the discrete
boundary of F . It is a simple exercise to work out that F = L(V (F )). In particular,
each stepped surface is characterised by this discrete boundary.

4.2.2 The height function of a stepped surface
Consider a stepped surface F . The height function associated to F is essentially a
function that has the discrete boundary V (F ) of F as its graph. The value of this
function at each vertex x ∈ V (F ) is given by x1 + · · ·+ xd+1 = (x,n), where n is the
vector e1 + · · ·+ ed+1 and (·, ·) the natural inner product. This value is also called
the height of the vertex x.

Write (Xd, Ed) for the graph obtained from the square lattice Zd+1 after identifying
all vertices which differ by an integer multiple of n. In particular, each vertex [x] ∈ Xd

is an equivalence class of the form [x] := x + Zn for some x ∈ Zd+1. The 2d + 2
neighbours of [x] are of the form [x± ei]. The graph (Xd, Ed) is called the simplicial
lattice. It is a simple exercise to derive from the definition of a stepped surface that
|[x]∩ V (F )| = 1 for any [x] ∈ Xd. To derive this, observe first that x+Rn intersects
∂F once because F is closed under ≤, then note that this point of intersection has
integral coordinates whenever x does.

The height function associated to F is given by the function

f : Xd → Z, [x] 7→ (y,n) where {y} = [x] ∩ V (F ).

This is the desired parametrisation of V (F ); the set V (F ) is equal to

V (f) := {x ∈ Zd+1 : (x,n) = f([x])}.
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The assignment F 7→ f is injective because F 7→ V (F ) is injective.
Let us now identify the image of the map F 7→ f . The function f satisfies

f([x]) ≡ (x,n) mod d+ 1; we call this the parity condition. Assert furthermore that
f([x + ei]) ≤ f([x]) + 1. This assertion is called the Lipschitz condition.

Suppose that the assertion is false, that is, that instead f([x + ei]) > f([x]) + 1.
Write y for the unique vertex in [x] ∩ V (F ), and write z for the unique vertex in
[x + ei]∩ V (F ). Then zj > (y + ei)j ≥ yj for all j. In this case, it is impossible that
both z and y are contained in ∂F , because F is closed under ≤. This proves the
assertion.

The Lipschitz condition also implies that f([x + ei]) ≥ f([x]) − d, since [e1 +
· · ·+ ed+1] = [n] = [0]. The Lipschitz condition, this new inequality, and the parity
condition imply jointly that the gradient ∇f of f satisfies

∇f([x], [x + ei]) := f([x + ei])− f([x]) ∈ {−d, 1}.

On the other hand, if the flow ∇f satisfies this equation for any x and i and if f([0])
is an integer multiple of d+ 1, then f also clearly satisfies the parity condition.

A height function is a function f : Xd → Z which satisfies f([0]) ∈ (d+ 1)Z and

∇(f([x]), f([x + ei])) = f([x + ei])− f([x]) ∈ {1,−d}

for all x and i; write Ω for the set of height functions. If F is a stepped surface,
then the associated height function f is indeed an element of Ω. The injective map
Ψ→ Ω, F 7→ f is in fact a bijection; its inverse is given by the map Ξ : Ω→ Ψ, f 7→
L(V (f)). For details, refer to [41].

4.2.3 The tiling associated to a stepped surface

If f is a height function, then write

T (f) := {{x,y} ∈ Ed : ∇f(x,y) = −d}.

The set T (f) characterises ∇f , and therefore it characterises the function f up to
constants. The first goal is to characterise the image of the map f 7→ T (f) over Ω.

A path (sk)0≤k≤n ⊂ Xd of length n = d + 1 is called a rooted simplicial loop
or simply a simplicial loop if there exists a permutation ξ ∈ Sd+1 such that sk =
sk−1 + eξ(k) for any 1 ≤ k ≤ d+ 1. This implies that s is closed because [x] + e1 +

· · ·+ ed+1 = [x+n] = [x]. Write Rd for the set of rooted simplicial loops. Sometimes
we are not concerned with the starting points of the loops. In those cases, two loops
are considered equal if they are equal up to indexation—this is equivalent to requiring
that the two loops traverse the same set of edges. Write Ud for the set of unrooted
simplicial loops.

Let s denote a simplicial loop. Knowing that ∇f must integrate to zero along this
simplicial loop, it is immediate that exactly one of the edges of s is contained in T (f).
Write Θ for the set of tilings, that is, the set of subsets T ⊂ Ed with the property
that |T ∩ s| = 1 for any simplicial loop s. To see that the map Ω→ Θ, f 7→ T (f) is
surjective, let T ∈ Θ, and write αT for the unique flow on (Xd, Ed) such that

αT ([x], [x + ei]) =

{
1 if {[x], [x + ei]} 6∈ T ,
−d if {[x], [x + ei]} ∈ T .

(4.2.1)
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Then αT = ∇f for some height function f ∈ Ω if and only if αT is conservative.
The flow αT integrates to zero along any simplicial loop, by definition of a tiling. It
is a simple exercise in group theory to see that this implies that αT integrates to
zero along any closed path, since the graph (Xd, Ed) can be written as the Cayley
graph on the generators e1, . . . , ed+1 subject to the relators which are given by all
possible permutations of these d+ 1 elements—these relators correspond exactly to
the simplicial loops. This proves that T = T (f) for some height function f ∈ Ω, and
therefore the map Ω→ Θ, f 7→ T (f) is surjective. Since T (f) characterises f up to
constants, this also implies that the map Φ : Ω→ (d+ 1)Z×Θ, f 7→ (f(0), T (f)) is
a bijection.

4.2.4 The geometrical intuition behind tilings
Let us connect the combinatorial tilings T ∈ Θ to the familiar geometric picture of
lozenge tilings. If d = 2, then (Xd, Ed) is the triangular lattice, and the set T ⊂ Ed
has the property that T contains exactly one edge of every triangle. Thus, if we
remove the set T from this triangular lattice, then we are left with a collection of
lozenges.

The boundary ∂F ⊂ Rd+1 of a stepped surface is a union of hypercubes of
codimension one with integral coordinates. Write H for the orthogonal complement
of n, and write P : Rd+1 → H for orthogonal projection onto H. For each stepped
surface F , the projection map P restricts to a bijection from ∂F to H. If d = 2, then
P maps each two-dimensional square contained in ∂F , to a lozenge embedded in H,
and jointly these lozenges partition H—we ignore here the fact that the topological
boundaries of the lozenges overlap. We observed in the previous paragraph that each
edge in T encodes exactly one of these lozenges. The same reasoning applies to higher
dimensions: the map P maps the hypercubes of codimension 1 which make up ∂F to
H, and these projected hypercubes partition the d-dimensional real vector space H
up to overlapping boundaries. Finally, each edge in T encodes exactly one of these
projected hypercubes.

4.2.5 Lemmas for analysing stepped surfaces

The map Ξ preserves the lattice structure

Lemma 4.2.2. Let f1 and f2 be height functions and let F1 = Ξ(f1) and F2 = Ξ(f2).
Then

1. f1 ≤ f2 if and only if F1 ⊂ F2,

2. f1∨f2 is a height function, F1∪F2 is a stepped surface, and Ξ(f1∨f2) = F1∪F2,

3. f1∧f2 is a height function, F1∩F2 is a stepped surface, and Ξ(f1∧f2) = F1∩F2.

Of course, 2 and 3 extend to finite unions, intersections, maxima, and minima.

See Lemma 2 in [41] for a proof.

Local moves

If two height functions agree at all but one vertex, then it is said that they differ by a
local move. A local move is equivalent to adding or removing a single unit hypercube
to the corresponding stepped surface.
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Lemma 4.2.3. Suppose that R ⊂ Xd is finite and that f and g are height functions
that are equal outside R and satisfy f ≤ g on R. Then there exists a sequence of
height functions (fk)0≤k≤n ⊂ Ω with

1. f0 = f and fn = g,

2. for every 0 ≤ k < n, there is a unique x ∈ R such that fk+1 = fk + (d+ 1) · 1x.

The sequence is increasing and all functions fk agree to f and g on Xd rR.

See Lemma 3 in [41] for a proof. If f and g agree outside R but neither f ≤ g
nor f ≥ g, then one can first go down from f to f ∧ g and then up from f ∧ g to g.
Lemma 4.2.2 ensures that f ∧ g is a height function.

The Kirszbraun theorem

Consider a vertex [x] ∈ Xd. Since all elements in [x] differ from one another by
multiples of n, and since n ∈ KerP , there is a unique element y ∈ H such that
{y} = P [x]. Let us identify each vertex [x] ∈ Xd with this corresponding point
y ∈ H. Write gi := Pei = ei − n/(d+ 1). The neighbours of x ∈ Xd ⊂ H are then
given by x± gi.

Define the asymmetric norm ‖ · ‖+ on H by ‖x‖+ := −(d+ 1) mini xi. Remark
that ‖ · ‖+ is the largest asymmetric norm on H subject to ‖gi‖+ ≤ 1 for all i. In
other words, a function f : Xd → R satisfies the Lipschitz condition introduced in
Subsection 4.2.2 if and only if

f(y)− f(x) ≤ ‖y − x‖+ (4.2.4)

for all x,y ∈ Xd. A function f : D → R defined on a subset D ⊂ H is called Lipschitz
whenever f satisfies (4.2.4) for all x,y ∈ D. This definition is consistent with the
previous definition of the Lipschitz property for height functions.

Lemma 4.2.5. If a function f : H → R is Lipschitz then there exists a unique largest
height function g subject to g ≤ f |Xd; the value of g at each x ∈ Xd is given by
g(x) := k, where k is the largest integer which makes g satisfy the parity condition at
x, and which does not exceed f(x).

If f : H → R is a Lipschitz function, then write bfc for the largest height function
subject to bfc ≤ f |Xd ; its function values are given by the previous lemma. We leave
its proof to the reader. The previous lemma results in a discrete analogue of the
Kirszbraun theorem for the current setting.

Lemma 4.2.6. If R ⊂ H and f : R→ R is Lipschitz, then f extends to a Lipschitz
function f̄ : H → R. If R ⊂ Xd and f : R→ Z is Lipschitz and satisfies the parity
condition for every x ∈ R, then f extends to a height function f̄ ∈ Ω.

The first assertion is the original Kirszbraun theorem. For the second assertion,
let R ⊂ Xd and f : R → Z be as in the lemma. The function f extends to some
Lipschitz function g : H → R by the Kirszbraun theorem. The previous lemma states
that bgc is a height function that equals f on R. This proves the second assertion.
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4.3 Random height functions

In this section, we introduce boundary conditions (fixed or periodic) in order to
reduce Ω to a finite set, and define and study probability measures on these finite
sets. We assert that the model is monotone in boundary conditions, and state an
immediate corollary of this fact by employing the Azuma-Hoeffding inequality.

4.3.1 Fixed boundary conditions
We reduce Ω to a finite set by applying fixed boundary conditions. One can study
the uniform probability measure on this finite set. One can also define more general
Boltzmann measures. If R ⊂ Xd, then write Rc for Xd rR. Write Ed(R) for the set
of edges in Ed that are incident to at least one vertex in R.

Definition 4.3.1. Define, for any height function f and for any tiling T ,

Ω(R, f) := {g ∈ Ω : g|Rc = f |Rc},
Θ(R, T ) := {Y ∈ Θ : Y r Ed(R) = T r Ed(R)}.

Call a set R ⊂ Xd a region if R is finite and if Rc is connected.

Lemma 4.3.2. Let R ⊂ Xd be a finite set, f a height function, and T := T (f).
Then

1. Ω(R, f) and Θ(R, T ) are finite sets,

2. The map g 7→ T (g) restricts to an injection from Ω(R, f) to Θ(R, T ),

3. If R is a region, then the restricted map in the previous statement is a bijection.

Proof. Without loss of generality, R does not contain 0. If g ∈ Ω(R, f) then we must
have g(0) = f(0) and T (g) rEd(R) = T (f) rEd(R). The map g 7→ T (g) restricts
to an injection because the gradient ∇g can be reconstructed from T (g), which is
sufficient for reconstructing g as the constant is determined from g(0) = f(0). The
logarithm of |Θ(R, T )| is bounded by |Ed(R)| log 2 < ∞. We have now proven the
first two assertions of the lemma.

Next, we prove that the same restriction map is also surjective whenever R is
a region. Fix Y ∈ Θ(R, T ) and define g := Φ−1(f(0), Y ). It suffices to show that
g ∈ Ω(R, f), that is, that g(x) = f(x) for all x ∈ Rc. Let p denote a path from 0 to
x through (Xd rR,Ed r Ed(R)); such a path exists by definition of a region. Then
g(x)− f(0) and f(x)− f(0) can both be calculated in terms of integrals of ∇g and
∇f respectively over the path p. Since Y rEd(R) = T rEd(R), these gradients are
equal on the edges of p, which proves that g(x) = f(x).

Fix a finite set R ⊂ Xd and a height function f ∈ Ω. Write f± for the pointwise
minimum and maximum over all height functions in the finite set Ω(R, f). These are
also height function by virtue of Lemma 4.2.2, and clearly Ω(R, f) = {g ∈ Ω : f− ≤
g ≤ f+}. The same lemma implies the following result.

Lemma 4.3.3. Fix a finite set R ⊂ Xd and a height function f . Write f± as in the
preceding discussion and define F± := Ξ(f±). Then Ξ restricts to a bijection from
Ω(R, f) to {F ∈ Ψ : F− ⊂ F ⊂ F+}.

157



Next, we define Boltzmann measures. The uniform probability measures on
Ω(R, f) and Θ(R, T ) are examples of Boltzmann measures. The introduction of
Boltzmann measures allows us to increase the relative probability of tilings containing
certain edges.

Definition 4.3.4. Let R be a region, f a height function, and T := T (f) a tiling.
A positive real function w on Ed(R) is called a weight function. Let Pw be the
probability measure on the set Θ(R, T ) such that Pw(Y ) ∝

∏
e∈Y ∩Ed(R)w(e) for any

Y ∈ Θ(R, T ), that is,

Pw(Y ) :=
1

Zw

∏
e∈Y ∩Ed(R)

w(e) where Zw :=
∑

Y ∈Θ(R,T )

∏
e∈Y ∩Ed(R)

w(e).

The probability measure Pw is called a Boltzmann measure and the normalising
constant Zw is called the partition function. The measure Pw is also considered a
probability measure on the sample space Ω(R, f) by defining Pw(g) := Pw(T (g)).
Write P for Pw with w identically equal to 1, and write Z for the corresponding
partition function. Observe that Z = |Ω(R, f)| = |Θ(R, T )|. The definition of Zw
makes sense also when w takes complex values.

We prove that Zw equals the Cayley hyperdeterminant of a suitable hypermatrix
in Section 4.6.

4.3.2 The periodic setting
Write H∗ for the natural dual space of the d-dimensional real vector space H. A
linear form s ∈ H∗ is called a slope.

Definition 4.3.5. Periodic boundary conditions are characterised by a pair (L, s),
where L ⊂ Xd is a full-rank sublattice and s ∈ H∗ a slope. A function f : Xd → R is
called (L, s)-periodic if, for any x ∈ Xd and y ∈ L,

f(x + y) = f(x) + s(y).

Write Ω(L, s) for the set of (L, s)-periodic height functions that map 0 to 0. Call a
pair (L, s) valid if Ω(L, s) is nonempty.

It is not a priori clear which periodic boundary conditions (L, s) are valid. If f is a
height function, then write f |L and s|L for the restrictions of f and s to L ⊂ Xd ⊂ H
respectively. First, every function f ∈ Ω(L, s) must satisfy f |L = s|L, so if s|L does
not extend to a height function then Ω(L, s) is empty. On the other hand, if s|L
extends to a height function, then the minimum amongst all possible extensions is
(L, s)-periodic. Therefore (L, s) is valid if and only if s|L extends to a height function.
Lemma 4.2.6 imposes a Lipschitz condition and a parity condition on s|L. Clearly
s|L is Lipschitz if and only if s is Lipschitz.

Definition 4.3.6. Write S for the set of slopes in H∗ which are Lipschitz, that is,

S := {s ∈ H∗ : maxi s(gi) ≤ 1}.

Proposition 4.3.7. The set S ⊂ H∗ is a closed d-simplex with extreme points
(si)1≤i≤d+1, where each slope si satisfies, for any j,

si(gj) :=

{
−d if i = j,
1 if i 6= j.

158



Introduce also the parity condition for the following result.

Lemma 4.3.8. Suppose given periodic boundary conditions (L, s). Then (L, s) is
valid if and only if s ∈ S and s([x]) ≡ (x,n) mod d+ 1 for every [x] ∈ L ⊂ Xd. In
particular, if L ⊂ (d + 1)Xd, then (x,n) ∈ (d + 1)Z for every [x] ∈ L, and under
this extra condition, (L, s) is valid if and only if s ∈ S and s(x) ∈ (d+ 1)Z for every
x ∈ L.

If L = n(d+ 1)Xd for some n ∈ N, then (L, s) is valid if and only if s ∈ S and

s(n(d+ 1)gi) = n(d+ 1)s(gi) ∈ (d+ 1)Z

for every 1 ≤ i ≤ d+ 1, that is, s(gi) ∈ Z/n.

Definition 4.3.9. Write Ln := n(d+ 1)Xd for every n ∈ N. Define

Sn := {s ∈ S : s(gi) ∈ Z/n for every 1 ≤ i ≤ d+ 1} .

In other words, Sn is precisely the set of slopes s such that (Ln, s) is valid.

Remark that Sn converges to S in the Hausdorff metric, in the sense that every
slope s ∈ S can be approximated by a sequence of slopes (sn)n∈N where sn ∈ Sn for
each n.

4.3.3 Symmetries of the periodic setting

For x ∈ Xd, write θx for the map H → H, y 7→ y + x. This map is called a shift,
and it is also clearly a symmetry of Xd. Write Θ(L) for the group {θx : x ∈ L} for
any sublattice L of Xd, and write Θ := Θ(Xd).

If f is a function defined on either H or Xd, then write θf for the function defined
by θf(x) := f(θx). If f is a height function and θ ∈ Θ, then define the height function
θ̃f by θ̃f := θf − f(θ0) + f(0). In other words, θ̃f is the unique height function
such that (θ̃f)(0) = f(0) and θT (θf) = T (f). The map θ̃ : Ω→ Ω is bijective, and θ̃
restricts to a bijection from Ω(L, s) to Ω(L, s) for any periodic boundary conditions
(L, s).

Each height function f ∈ Ω(L, s) is characterised by the Θ(L)-invariant set
T (f) ⊂ Ed. This implies in particular that the set Ω(L, s) is finite, because we have
|Ω(L, s)| ≤ 2|E

d/Θ(L)| <∞.

Lemma 4.3.10. Pick valid periodic boundary conditions (L, s), write P for the
uniform probability measure on Ω(L, s), and write f for the random function in
Ω(L, s). Then θ̃f ∼ f in P for any θ ∈ Θ. Moreover, Ef(x) = s(x) for every
x ∈ Xd.

Proof. The first assertion is obvious as θ̃ : Ω(L, s)→ Ω(L, s) is a bijection and P is
uniform on this set. The first assertion implies that the map E(f(·)) : Xd → R is
additive. Therefore it must extend to a linear form in H∗. Now L is full-rank and
P(f(x) = s(x)) = 1 for every x ∈ L, and therefore E(f(·)) must extend to the linear
form s ∈ S ⊂ H∗.
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4.3.4 Monotonicity of the random function
Monotonicity in boundary conditions is often an essential property for understanding
the macroscopic behaviour of the system. See Lemmas 3 and 4 in [41] for a proof of the
following theorem—note that these lemmas apply both to fixed boundary conditions
in the general Boltzmann setting, as well as to periodic boundary conditions. The
proof simply says that the Glauber dynamics preserve the monotonicity and mix to
the correct distribution.

Theorem 4.3.11 (Monotonicity). Let R be a region, let b1, b2 ∈ Ω, and fix a weight
function w. Write P1 and P2 for the Boltzmann measures with weight w on Ω(R, b1)
and Ω(R, b2) respectively. Write a− and a+ for the infimum and supremum of
(b1 − b2)|Rc respectively. Then there exists a probability distribution P on the pair
(f1, f2) ∈ Ω(R, b1)× Ω(R, b2) with marginals P1 and P2 such that a− ≤ f1 − f2 ≤ a+

almost surely.
Now let (L, s) denote a valid pair of periodic boundary conditions, let b1, b2 ∈

Ω(L, s), and fix R ⊂ Xd. Write P1 and P2 for the uniform probability measure on
Ω(L, s) conditioned on f |R = b1|R and f |R = b2|R respectively. Write a− and a+ for
the infimum and supremum of (b1 − b2)|R respectively. Then there exists a probability
distribution P on the pair (f1, f2) ∈ Ω(L, s)2 with marginals P1 and P2 such that
a− ≤ f1 − f2 ≤ a+ almost surely.

4.3.5 Pointwise concentration inequalities

Theorem 4.3.12 (Azuma-Hoeffding inequality). Let R ⊂ Xd denote a finite set, let
b ∈ Ω, and fix a weight function w. Write P for the Boltzmann measure with weight
w on Ω(R, b). Fix x ∈ Xd. Then the following inequalities hold true:

1. Var f(x) ≤ (d+ 1)2n,

2. P(f(x)− µ ≥ (d+ 1)a) ≤ exp− a2

2n for all a ≥ 0 whenever n > 0,

3. P(f(x)− µ ≤ (d+ 1)a) ≤ exp− a2

2n for all a ≤ 0 whenever n > 0,

where n = d(Xd,Ed)(x, R
c) and µ = Ef(x).

Now let (L, s) denote a valid pair of periodic boundary conditions, and write P for
the uniform probability measure on Ω(L, s). Then (1)–(3) remain true for the choices
n = d(Xd,Ed)(x, L) ≤ d(Xd,Ed)(x,0) and µ = Ef(x) = s(x).

Proof. This is a consequence of monotonicity (Theorem 4.3.11) and the Azuma-
Hoeffding inequality. Focus on fixed boundary conditions; the proof for periodic
boundary conditions is entirely analogous. Let p = (pk)0≤k≤n denote a path of
shortest length from Rc to x. Write (fk)0≤k≤n for the martingale such that fk equals
the expectation of f(x) conditional on the values of f on the vertices in {p0, . . . ,pk}.
By Theorem 4.3.11, we have |fk − fk+1| ≤ d+ 1. The theorem now follows from the
Azuma-Hoeffding inequality.

4.4 The cluster boundary swap
In the seminal work [54], Sheffield introduces cluster swapping. This technique is
related to the double dimer model, where for uniform probability measures, the
orientation of each loop is uniformly random in the two states, independently of any
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Figure 4.2: The values of g = f1 − f2 along a simplicial loop; d = 4

other structure that is present. In this section, we introduce the cluster boundary
swap. The cluster boundary swap is a special case of the cluster swap, adapted and
optimised for the special nature of the model under consideration. Its properties
are reminiscent of the double dimer model, because, conditional on the geometrical
structure involving boundaries and double edges, the orientation of each boundary is
uniformly random in its two states.

4.4.1 The boundary graph and the level set decomposition

In Subsection 4.2.3 it was proven that every height function f is characterised by the
pair Φ(f) = (f(0), T (f)). In this section, f1 and f2 denote height functions, and we
write (ai, Ti) := Φ(fi) for i ∈ {1, 2}. The difference function f1 − f2 is denoted by g.
The goal of this subsection is to understand the level set structure of g.

Lemma 4.4.1. Let s ∈ Rd be a rooted simplicial loop. As one walks along s,

1. The function f1 moves up by 1 exactly d times,

2. The function f1 moves down by d exactly once,

3. Either g remains constant, or it changes value twice,

4. If g is not constant, then the difference between its two values is d+ 1.

The lemma follows immediately from the observations in Subsection 4.2.3.
Write A	B for the symmetric difference of arbitrary sets A and B.

Definition 4.4.2. Define the graph Gg = (Vg, Eg) as follows. Its vertex set Vg is
given by

Vg := T1 	 T2 = {e ∈ Ed : g is not constant on e} ⊂ Ed,

and two vertices e1, e2 ∈ Vg ⊂ Ed are neighbours if some simplicial loop travels
through both e1 and e2. The graph Gg is called the boundary graph. For e ∈ Vg,
write x−g (e),x+

g (e) ∈ Xd for the vertices contained in e ⊂ Xd on which g takes the
smaller value and the larger value respectively—see Figure 4.2. For any C ⊂ Vg, we
write x±g (C) := {x±g (e) : e ∈ C}.
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For example, if d = 2, then one can identify each edge of the triangular lattice
with the lozenge obtained by removing that edge. The set Vg is then precisely the
set of edges of lozenges which appear in exactly one of the two configurations. Two
edges in Vg are neighbours if they belong to the same triangle of the triangular lattice.
Each connected component of Gg corresponds to the set of edges of the triangular
lattice crossed by a nontrivial loop of the double dimer model.

Lemma 4.4.3. Let C ⊂ Vg be a connected component of Gg. Then (Xd, Ed r C)
consists of two connected components, one containing x−g (C), and the other containing
x+
g (C). Moreover, each of x−g (C) and x+

g (C) is contained in a connected component
of the graph (Xd, Ed r Vg).

Proof. Suppose that the Gg-vertices e1 and e2 are neighbours in the graph Gg; write
s for a simplicial loop passing through both e1 and e2. Then s contains no other
edges in Vg by Proposition 4.4.1, 3, and therefore x−g (e1) and x−g (e2) are connected
in the graph (Xd, Ed r Vg); see also Figure 4.2. Induct on this argument to see that
x−g (C) is contained in a connected component of (Xd, Ed r Vg). Identical reasoning
applies to the set x+

g (C), and we also learn that each of x±g (C) is contained in a
connected component of (Xd, Ed r C).

The sets x±g (C) cover all the endpoints of edges in C, and therefore two possibilities
remain: either the graph (Xd, Ed r C) is connected, or it consists of two connected
components, with one containing x−g (C), and the other containing x+

g (C). To establish
the lemma we must exclude the first possibility. Every simplicial loop intersects
C an even number of times. The group theory arguments that proved that the
flow in Subsection 4.2.3 was conservative, imply here that any closed walk through
(Xd, Ed) intersects C an even number of times. This proves that (Xd, Ed rC) is not
connected.

Definition 4.4.4. A g-level set is a connected component of the graph (Xd, EdrVg).
A g-boundary is a connected component of the graph Gg = (Vg, Eg). The g-level
sets are considered subsets of Xd, and the g-boundaries are considered subsets of
Vg ⊂ Ed. If E is a g-boundary, then write X±g (E) for the g-level set containing
x±g (E). The level set decomposition of g or LSD(g) is an undirected graph, where the
vertices are the g-level sets and the edges are the g-boundaries. The g-boundary E
connects the g-level sets X−g (E) and X+

g (E). Write g for the graph homomorphism
g : LSD(g) → (d + 1)Z that assigns the value g(X) to a g-level set X. The vector
field ∇g directs the edges in LSD(g): it orients each g-boundary E from X−g (E) to
X+
g (E). Write (LSD(g),∇g) for this directed graph.

If d = 2, then the g-boundaries correspond exactly to the loops of the double
dimer model. The g-level sets correspond to the connected components of R2 with
all loops of the double dimer model removed. In Figure 4.3 we see an example of this
graph. Each g-level set contracts into a single LSD(g)-vertex. The LSD(g)-edges are
comprised of the g-boundaries separating the g-level sets.

Lemma 4.4.5. The graph LSD(g) is well-defined and a tree.

Proof. It follows from Lemma 4.4.3 that every ∇g-directed LSD(g)-edge has a well-
defined startpoint and endpoint, and that removing an edge disconnects the graph.
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Figure 4.3: The level set decomposition and a cluster boundary swap by M ; d = 2.

4.4.2 The cluster boundary swap

Lemma 4.4.6. Let M ⊂ Vg ⊂ Ed be a union of g-boundaries. Then the sets
T ′i := Ti 	 M are tilings for i ∈ {1, 2}. Write f ′1 and f ′2 for the unique height
functions such that Φ(f ′i) = (ai, T

′
i ) and define g′ = f ′1 − f ′2. Then Gg′ = Gg and

LSD(g′) = LSD(g). Moreover, ∇g′ and ∇g are the same except that the g-boundaries
contained in M have reversed orientation, that is, ∇g′ = (−1)1M · ∇g.

Proof. First claim that T ′1 and T ′2 are tilings. We focus on T ′1. Let s be a simplicial
loop, and abuse notation by writing s also for the set of edges crossed by this loop.
It suffices to prove that |T ′1 ∩ s| = 1. Now either s ∩M is empty, or contains two
edges, one from T1 and one from T2. In the former case we have T ′1 ∩ s = T1 ∩ s and
consequently |T ′1∩ s| = 1. In the latter case, we have T ′1∩ s = T2∩ s and consequently
|T ′1 ∩ s| = 1, as desired. This proves the claim. The appropriate functions f ′1 and f ′2
exist because Φ is a bijection from Ω to (d+ 1)Z×Θ. Next,

Vg′ := T ′1 	 T ′2 = (T1 	M)	 (T2 	M) = T1 	 T2 = Vg,

and consequently Gg′ = Gg and LSD(g′) = LSD(g). Recall the definition of αT in
terms of T in (4.2.1). We have

∇g′ = αT ′1 − αT ′2 = αT1	M − αT2	M = (−1)1M · (αT1 − αT2) = (−1)1M · ∇g;

this follows directly from the fact thatM ⊂ T1	T2 and from the definition of αT .

Definition 4.4.7. Define

(T1, T2)	M := (T ′1, T
′
2) = (T1 	M,T2 	M),

(f1, f2)	M := (f ′1, f
′
2) =

(
Φ−1(a1, T1 	M),Φ−1(a2, T2 	M)

)
,

whenever these are related as in the previous lemma. Write (f1, f2) ∼ (f ′1, f
′
2)

whenever (f ′1, f
′
2) = (f1, f2) 	M for some union of g-level sets M , in which case

we say that the two pairs differ by a cluster boundary swap. The relation ∼ is an
equivalence relation; write [(f1, f2)] for the equivalence class of (f1, f2).
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Remark 4.4.8. 1. If (f ′1, f
′
2) = (f1, f2) 	M , then f ′1 + f ′2 = f1 + f2; a cluster

boundary swap does not change the sum of the two involved height functions.
To see that this is the case, observe that M is a subset of T1	T2, and therefore
1T1	M + 1T2	M = 1T1 + 1T2 and

∇f1 +∇f2 = αT1 + αT2 = αT1	M + αT2	M = ∇f ′1 +∇f ′2.

2. The cluster boundary swap was formalised in terms of the height functions
f1 and f2. The cluster boundary swap should however be understood as an
operation on the gradients ∇f1 and ∇f2 of these height functions. This gradient
operation is made into an operation on the non-gradient height functions by
choosing the vertex 0 ∈ Xd as a reference vertex at which the height is held
constant.

Figure 4.3 illustrates a cluster boundary swap. The thick contour is the set M ,
and the two difference functions g and g′ are related by g = f1 − f2 and g′ = f ′1 − f ′2
where (f ′1, f

′
2) := (f1, f2)	M . Swapping by M effectively inverts the orientation of

the corresponding g-boundary. One can swap any union of g-boundaries. Therefore
one can direct the edges of LSD(g) in any desired way. We obtain the following
theorem.

Theorem 4.4.9. The relation ∼ is an equivalence relation on Ω2. The elements in
the equivalence class of (f1, f2) correspond naturally to the graph homomorphisms
from the tree LSD(g) to (d+ 1)Z that map 0 to g(0).

4.5 The variance and covariance structure
This section is dedicated to a straightforward application of Theorem 4.4.9 in the
fixed boundary setting.

Theorem 4.5.1. Let R be a region not containing 0, let b be a height function, and
let w : Ed(R) → (0,∞) be a weight function. Denote the Boltzmann measure on
Ω(R, b) with weight w by Pw. Abuse notation by writing Pw for Pw×Pw; write (f1, f2)
for the pair of random functions in this measure, and write g := f1 − f2. Also write
f for f1. Then for any x ∈ Xd, we have

Varw f(x) =
1

2
(d+ 1)2EwdLSD(g)(0,x).

In other words, the variance of f(x) in Pw equals 1
2(d+ 1)2 times the Pw-expectation

of the number of g-boundaries that separate x from 0.

Proof. The random variables f1(x) and f2(x) are i.i.d., and therefore

Varw f(x) =
1

2
Varw(f1(x)− f2(x)) =

1

2
Ew(f1(x)− f2(x))2 =

1

2
Ewg(x)2.

It suffices to prove that Ewg(x)2 = (d + 1)2EwdLSD(g)(0,x). In fact, we make the
stronger claim that

Ew(g(x)2|[(f1, f2)]) = (d+ 1)2dLSD(g)(0,x).

The left hand side is σ([(f1, f2)])-measurable by definition. For the right hand side,
observe that the graph LSD(g) is constant on each equivalence class [(f1, f2)], which
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means that dLSD(g)(0,x) is also σ([(f1, f2)])-measurable. The proof of the claim relies
on Theorem 4.4.9.

Assert first that [(f1, f2)] ⊂ Ω(R, b)2 whenever (f1, f2) ∈ Ω(R, b)2. The set Rc is
connected by the definition of a region, and it contains 0. Therefore Rc is contained
in the g-level set containing 0. A cluster boundary swap does not alter the values of
f1 and f2 on this g-level set, and therefore f1, f2, f ′1, f ′2, and b all assume the same
values on Rc provided that (f ′1, f

′
2) ∼ (f1, f2) and (f1, f2) ∈ Ω(R, b)2. This proves

the assertion. Next, assert that Pw conditioned on [(f1, f2)] is uniform on [(f1, f2)].
To see that this is the case, observe that

Pw((f1, f2)) ∝
∏

e∈Ed(R)

w(e)(1T (f1)+1T (f2))(e).

Now 1T (f1) + 1T (f2) = 1T (f ′1) + 1T (f ′2) whenever (f ′1, f
′
2) ∼ (f1, f2), which proves the

assertion.
Theorem 4.4.9 now provides the distribution of the function g in the measure

Pw conditioned on [(f1, f2)]. In particular, as LSD(g) is a tree, the distribution of
g(x) is given by summing the outcomes of dLSD(g)(0,x) fair coin flips, each worth
±(d+ 1). It is well-known that the expectation of the square of this random variable
is (d+ 1)2dLSD(g)(0,x), which proves the claim.

In fact, the exact same calculation works for the covariance of f(x) with f(y).

Theorem 4.5.2. Work in the setting of the previous theorem. Then for any x,y ∈ Xd,
we have

Covw(f(x), f(y)) =
1

2
(d+ 1)2EwdLSD(g)(0, z)

where z is the last LSD(g)-vertex of the LSD(g)-path from 0 to x that also appears
in the LSD(g)-path from 0 to y. In other words, the covariance of (f(x), f(y)) in Pw
equals 1

2(d + 1)2 times the expectation of the number of g-boundaries that separate
both x and y from 0.

Proof. Again, we have Covw(f(x), f(y)) = 1
2 Covw(g(x), g(y)), and we prove that

Ew(g(x)g(y)|[(f1, f2)]) = (d+ 1)2dLSD(g)(0, z).

The conditioned measure Pw directs the edges of LSD(g) independently and uniformly
at random, as in the previous theorem. Thus, under the conditioned measure Pw, we
have

(g(x), g(y)) ∼ (A+X,A+ Y ),

where A, X, and Y are independent, where A is determined by summing the outcome
of dLSD(g)(0, z) fair independent coin flips each valued ±(d+1), where X is determined
by flipping dLSD(g)(z,x) coins, and where Y is determined by flipping dLSD(g)(z,y)
coins. This proves the assertion.

4.6 Generalisation of the Kasteleyn theory
Consider fixed boundary conditions (R, f) and (R, T ) with R a region and T = T (f).
The goal of this section is to show that Z = |Ω(R, f)| = |Θ(R, T )| equals the Cayley
hyperdeterminant of the adjacency hypermatrix of a suitably defined hypergraph.
In fact, we have no trouble in generalising to Boltzmann measures; we show that
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one can insert the weights w into the adjacency hypermatrix so that the Cayley
hyperdeterminant equals Zw. The hypergraph, which we shall denote by (Ud, Hd), is
dual to the simplicial lattice (Xd, Ed). Recall that Ud is the set of unrooted simplicial
loops that was introduced earlier. In dimension d = 2 we recover exactly the theory
of the dimer model on the hexagonal lattice. (See Figure 4.1c.)

4.6.1 The dual of the simplicial lattice

In this subsection we define the hypergraph (Ud, Hd). Consider first the collection
of simplicial loops. If s = (sk)0≤k≤d+1 ∈ Rd is a rooted simplicial loop then s is
characterised by its starting point s0 ∈ Xd and the permutation ξ ∈ Sd+1 which
describes in which order the increments (gi)i appear. This automatically gives a
bijection from Rd to Xd × Sd+1. Let us agree to index each unrooted loop s ∈ Ud
(by default) such that s1 = s0 + gd+1. There is a unique way of doing so, because
the increment gd+1 appears exactly once in each loop. With this convention, each
unrooted loop s ∈ Ud is characterised by its starting point s0 and the order ξ ∈ Sd
in which the remaining increments {g1, . . . ,gd} appear in the path after the first
increment. By adopting the convention we obtain a bijection from Ud to Xd × Sd.
We identify the unrooted loop s with its image under the bijection, so that every pair
(x, ξ) ∈ Xd × Sd denotes also an unrooted simplicial loop.

Definition 4.6.1. For any e ∈ Ed, write h(e) for the set of unrooted simplicial loops
that traverse e.

Write e = {x,x + gj} ∈ Ed and let us make a number of observations about the
set h(e). First, the assignment e 7→ h(e) is injective, because the edge e is the only
edge that is traversed by all loops in h(e). Secondly, there are precisely d! unrooted
simplicial loops that traverse e, since they correspond to the d! ways that we can
order the d increments (gi)i 6=j that we need to walk back to x from x+gj . Therefore
h(e) contains d! unrooted loops. Finally, if s1, s2 ∈ h(e) are distinct loops identified
with the pairs (x1, ξ1), (x2, ξ2) ∈ Xd × Sd, then the permutations ξ1, ξ2 ∈ Sd must
be distinct. Conclude that for every ξ ∈ Sd, there is a unique x ∈ Xd such that
(x, ξ) ∈ h(e).

The reason that we introduced the map h is the following. A set T ⊂ Ed is a
tiling if and only if h(T ) is a partition of Ud, the set of simplicial loops. Once could
rephrase this statement by saying that h(T ) is a perfect matching of the hypergraph
(Ud, h(Ed)).

Definition 4.6.2. Write Hd for the set {h(e) : e ∈ Ed}. The hypergraph (Ud, Hd)
is called the dual hyperlattice or simply the dual (of the simplicial lattice).

Lemma 4.6.3. The map h : T 7→ {h(e) : e ∈ T} is a bijection from Θ to the set of
perfect matchings of the hypergraph (Ud, Hd).

Note that (Ud, Hd) is really dual to (Xd, Ed) because the map h is a bijection
from Ed to Hd. The hyperlattice is d!-uniform, because every hyperedge h(e) contains
d! elements. It is also d!-partite with the partition {Xd×{ξ} : ξ ∈ Sd}, because every
hyperedge h(e) contains one loop in each member Xd × {ξ}. The d!-partite structure
of the dual of the simplicial lattice is special and it is a feature that distinguishes the
simplicial lattice from other lattices (in particular, the author is not aware of a similar
construction for the square lattice in dimension larger than two). The d!-partite
structure enables us to generalise the Kasteleyn theory.
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4.6.2 The approach suggested by the classical dimer theory
The purpose of this section is to demonstrate that the size of Z = |Ω(R, f)| =
|Θ(R, T )| equals the Cayley hyperdeterminant of a suitable adjacency hypermatrix.
First recall how this works in the Kasteleyn theory for the dimer model on the
hexagonal lattice. If d = 2 then d! = 2, that is, (Ud, Hd) is a regular bipartite graph.
In fact, it is really the planar dual of the triangular lattice: the hexagonal lattice.
The vertex set Ud is split into its two parts: a set of black and a set of white vertices.
A dimer cover (that is, a perfect matching of the graph) matches each black vertex
to one white vertex. This is illustrated by Figure 4.1c. The dimer cover is thus
encoded by a bijective map σ from the set of black vertices to the set of white vertices;
each dimer is of the form {b, σ(b)} with b ranging over the set of black vertices. To
calculate the number of dimer covers, one needs to count the bijections σ from the
black vertices to the white that produce a dimer cover. If K is an n× n matrix, then
DetK is defined as (this is the Leibniz formula)

DetK =
∑
σ∈Sn

[
Signσ

n∏
k=1

K(k, σ(k))

]
. (4.6.4)

If the matrix K is suitably chosen, then the term in the square brackets reduces to
the indicator function of the event that σ encodes a dimer cover, in which case DetK
equals the number of dimer covers. This is the Kasteleyn theory for dimer models.
These observations suggest the following approach, consisting of four steps:

1. First, encode each tiling as a tuple of bijections. It turns out that we need d!−1
bijections in each tuple, because the graph (Ud, Hd) is d!-partite, and because
we need one bijection for each colour beyond the first. This is Lemma 4.6.8.

2. Second, we show that applying fixed boundary conditions fixes the bijections at
all but a finite number of points. Each tiling Y ∈ Θ(R, T ) is thus encoded as a
(d!− 1)-tuple of bijections between finite sets. This is Lemma 4.6.10.

3. Third, we define a rank d! adjacency hypermatrix K and construct the Cayley
hyperdeterminant for this hypermatrix, such that the each nonzero term in the
sum in the definition of DetK corresponds to a tiling Y ∈ Θ(R, T ). These are
Definitions 4.6.11 and 4.6.13.

4. Finally, each nonzero term in this sum takes value 1 or −1. This is due to the
signs that appear in the determinant formula (note that the sign also appears
in (4.6.4)). It takes some effort to show that all nonzero terms have the same
sign. This is Lemma 4.6.16.

Once this has all been done, it is clear that Z = |Ω(R, f)| = |Θ(R, T )| = ±DetK.
The dual hyperlattice (Ud, Hd) plays a crucial role in the analysis. Fix, throughout
the remainder of this section, an enumeration {ξ1, . . . , ξd!} = Sd.

4.6.3 The Kasteleyn theory in dimension d ≥ 2

We start with Step 1 of the proposed approach. Let Y ∈ Θ be a tiling of (Xd, Ed), so
that h(Y ) is a perfect matching of (Ud, Hd). Each hyperedge h(e) ∈ h(Y ) contains
one simplicial loop in each of the d! parts of the partition of Ud. The bijections
corresponding to Y are the unique maps

σi : Xd × {ξ1} → Xd × {ξi} (4.6.5)
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such that
{s, σ2(s), σ3(s), . . . , σd!(s)} ∈ h(Y ) (4.6.6)

for every unrooted simplicial loop s ∈ Xd × {ξ1}. All elements of h(Y ) are given by
ranging s over Xd×{ξ1} in (4.6.6). This is completely analogous to the dimer model.

Suppose given arbitrary bijections (σi)2≤i≤d! as in (4.6.5). Then the set of sets of
simplicial loops {

{s, σ2(s), . . . , σd!(s)} : s ∈ Xd × {ξ1}
}

(4.6.7)

is automatically a partition of Ud = Xd × Sd, because each map σi is a bijection and
therefore each loop (x, ξi) appears precisely once. Conclude that (4.6.7) is a perfect
matching of (Ud, Hd) if and only if (4.6.7) is a subset of the hyperedge set Hd. This
yields the following result: Step 1 of the suggested approach.

Lemma 4.6.8. The set of (d!− 1)-tuples of bijections(
σi : Xd × {ξ1} → Xd × {ξi}

)
2≤i≤d!

satisfying {s, σ2(s), . . . , σd!(s)} ∈ Hd

for every loop s ∈ Xd × {ξ1} is in bijection with the perfect matchings of (Ud, Hd).
The perfect matching of a tuple (under this bijection) is given by ranging s over
Xd × {ξ1}; this is precisely the set in (4.6.7).

Now consider Step 2 of the suggested approach. Suppose given a region R and
a tiling T , and consider a tiling Y ∈ Θ(R, T ). By definition, Y ∈ Θ(R, T ) if and
only if Y r Ed(R) = T r Ed(R). Therefore all loops traversing T r Ed(R) must be
matched in the same way as in T , and the loops traversing T ∩Ed(R) can be matched
differently. However, the loops that are matched differently are not allowed to produce
new hyperedges outside the set h(Ed(R)), since we want Y r Ed(R) = T r Ed(R).
We first need to identify, for each part of the partition {Xd × {ξi} : 1 ≤ i ≤ d!} of
Ud, the set of loops traversing T ∩ Ed(R), that is, the loops that are allowed to be
matched differently. This motivates the following definition.

Definition 4.6.9. Define, for a fixed region R and a fixed tiling T , and for 1 ≤ i ≤ d!,

Xi := {(x, ξi) : the loop (x, ξi) intersects T ∩ Ed(R)}
= {(x, ξi) : the loop (x, ξi) does not intersect T r Ed(R)} ⊂ Xd × {ξi}.

Observe that |Xi| = |T ∩ Ed(R)|, and therefore the sets Xi all have the same,
finite size. The sets Xi contain the loops that are allowed to match differently. This
is Step 2 of the suggested approach.

Lemma 4.6.10. Let R be a region and T a tiling. The set of (d! − 1)-tuples of
bijections

(σi : X1 → Xi)2≤i≤d! satisfying {s, σ2(s), . . . , σd!(s)} ∈ h(Ed(R))

for every loop s ∈ X1 is in bijection with the set of perfect matchings h(Y ) correspond-
ing to tilings Y ∈ Θ(R, T ). The perfect matching of a tuple (under this bijection)
is {

{s, σ2(s), . . . , σd!(s)} : s ∈ X1

}
∪
{
h(e) : e ∈ T r Ed(R)

}
.

The Kasteleyn hypermatrix and its determinant are now straightforwardly defined.
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Definition 4.6.11. Let R be a region and T a tiling. Define

K : X1 × · · · ×Xd! → {0, 1}, (s1, . . . , sd!) 7→ 1
(
{s1, . . . , sd!} ∈ h(Ed(R))

)
,

where 1(·) equals one if the statement inside holds true and zero otherwise. The map
K is called the Kasteleyn hypermatrix.

From this definition and the previous lemma it follows that

|Θ(R, T )| =
∑

σ2:X1→X2,...,σd!:X1→Xd!

 ∏
s∈X1

K(s, σ2(s), . . . , σd!(s))

 ,
where the sum is over bijective maps only. This because the product produces a 1 if
the tuple (σi)2≤i≤d! corresponds to an element of Θ(R, T ) and zero otherwise. Recall
that |X1| = · · · = |Xd!| = |T ∩Ed(R)| and write n for this finite number. To simplify
notation we identify each set Xi with [n] := {1, . . . , n}, so that the previous equality
is written

|Θ(R, T )| =
∑

σ2,...,σd!∈Sn

[
n∏
k=1

K(k, σ2(k), . . . , σd!(k))

]
. (4.6.12)

The expression on the right looks similar to the definition of the determinant of a
matrix, and if we insert the signs of the permutations then we obtain precisely the
Cayley hyperdeterminant.

Definition 4.6.13. Suppose given a map A : [n]m → C for some n ∈ N, m ∈ 2N.
Define

DetA :=
∑

σ2,...,σm∈Sn

([
m∏
i=2

Signσi

][
n∏
k=1

A( k , σ2(k), . . . , σm(k))

])
(4.6.14)

=
1

n!

∑
σ1,...,σm∈Sn

([
m∏
i=1

Signσi

][
n∏
k=1

A(σ1(k), σ2(k), . . . , σm(k))

])
. (4.6.15)

This expression is called the Cayley hyperdeterminant of A.

The equality in the definition is straightforwardly verified, and it requires m
to be even. If we replace A by K in (4.6.14) then (4.6.12) and (4.6.14) are the
same, except that some signs appear in (4.6.14) that do not appear in (4.6.12). We
conclude that the nonzero terms of the sum in (4.6.14) correspond precisely to the
elements of Θ(R, T ). This is Step 3 of the proposed approach. In order to prove that
|Θ(R, T )| = ±DetK, it suffices to show that all terms of the sum in the definition of
DetK have the same sign (this is Step 4).

Lemma 4.6.16. Let R be a region and let T be a tiling. Write K for the Kasteleyn
hypermatrix. Then all nonzero terms in the sum in the definition of DetK have the
same sign.

Proof. Let R, T and K be as in the lemma. We want to show that all terms of the
sum in (4.6.14) (with A replaced with K) have the same sign. The idea is to show
that the sign is invariant under making a local move as defined in Subsection 4.2.5.
Write f for the unique height function such that Φ(f) = (0, T ). The nonzero terms
in (4.6.14) correspond bijectively (through the bijections that we have set up in
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Lemma 4.3.2, 3 and in Lemma 4.6.10) to the height functions in Ω(R, f). We pick two
height functions f ′, f ′′ ∈ Ω(R, f) and prove that the corresponding terms in (4.6.14)
have the same sign. By Lemma 4.2.3, we may assume, without loss of generality,
that f ′′ = f ′ + (d + 1) · 1x for some x ∈ R. Let T ′, T ′′ ∈ Θ(R, T ) be the tilings
corresponding to f ′, f ′′ respectively. Recall that

T ′ =
{
{y,y + gi} ∈ Ed : ∇f ′(y,y + gi) = −d

}
,

and for T ′′ we have an identical expression in terms of f ′′. Remark that f ′′ = f ′

except at the point x, and therefore ∇f = ∇f ′ except at the edges incident to x.
Since f ′′ = f ′ + (d+ 1) · 1x and since both f ′ and f ′′ are height functions, we must
have

∇f ′(x,x + gi) = ∇f ′′(x− gi,x) = 1,

∇f ′(x− gi,x) = ∇f ′′(x,x + gi) = −d,

and therefore

T ′ r T ′′ = {{x,x− gi} : 1 ≤ i ≤ d+ 1},
T ′′ r T ′ = {{x,x + gi} : 1 ≤ i ≤ d+ 1}.

(4.6.17)

This means that all loops are matched the same (in the matchings h(T ′) and h(T ′′)),
except for the loops traversing the vertex x. In order to prove the lemma, we work
out the effect of this difference on the signs in (4.6.14). Let (σ′i)2≤i≤d! denote the
bijections from Lemma 4.6.10 corresponding to T ′. This means that

{{s, σ′2(s), . . . , σ′d!(s)} : s ∈ X1} = h(T ′ ∩ Ed(R)).

Define, for each 1 ≤ i ≤ d!, the bijections

δi : Xi → Xi, (x, ξi) 7→

{
(x + gj , ξ

i) if (x, ξi) traverses {x− gj ,x} for some j,
(x, ξi) if (x, ξi) does not traverse x.

Note that δi is a permutation consisting of one cycle of length d+ 1. Claim that

{{δ1(s), δ2 ◦ σ′2(s), . . . , δd! ◦ σ′d!(s)} : s ∈ X1} = h(T ′′ ∩ Ed(R)). (4.6.18)

To support the claim, recall (4.6.17) and observe simply that

{δ1(s), δ2 ◦ σ′2(s), . . . , δd! ◦ σ′d!(s)}

=

{
h({x,x + gi}) if {s, σ′2(s), . . . , σ′d!(s)} = h({x,x− gi}) for some i,
{s, σ′2(s), . . . , σ′d!(s)} otherwise.

This proves the claim. Since δ1 : X1 → X1 is a bijection, the sets in (4.6.18) are equal
to

{{s, δ2 ◦ σ′2 ◦ δ−1
1 (s), . . . , δd! ◦ σ′d! ◦ δ−1

1 (s)} : s ∈ X1}

This implies that the bijections from Lemma 4.6.10 corresponding to T ′′ are, for
2 ≤ i ≤ d!,

σ′′i = δi ◦ σ′i ◦ δ−1
1 : X1 → Xi.

Now note that Sign δi = (−1)d (since δi is a cycle of length d + 1). Conclude that
Sign δi · Sign δ−1

1 = 1, and therefore σ′i and σ
′′
i have the same sign in (4.6.14), for all

i.
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We have completed the final step of the approach that was suggested by the
Kasteleyn theory for dimer covers. This yields the following theorem.

Theorem 4.6.19. Let R be a region, let f be a height function, and let T = T (f).
Write K for the Kasteleyn hypermatrix. Then Z = |Ω(R, f)| = |Θ(R, T )| = ±DetK.

4.6.4 Boltzmann measures
Recall the definition of a Boltzmann measure in Subsection 4.3.1. The number
|Ω(R, f)| = |Θ(R, T )| equals the partition function Z of the uniform probability
measures on Ω(R, f) and Θ(R, T ). The Kasteleyn theory is easily generalised to
Boltzmann measures by inserting the weights into the Kasteleyn hypermatrix.

Definition 4.6.20. Let R be a region, T a tiling, and w : Ed(R)→ C any (complex-
valued) weight function. Define

Kw : X1 × · · · ×Xd! → C,

(s1, . . . , sd!) 7→ 1
(
{s1, . . . , sd!} ∈ h(Ed(R))

)
· w
(
h−1({s1, . . . , sd!})

)
.

The map Kw is called the weighted Kasteleyn hypermatrix.

By comparing the definition of Zw with the definition of the Cayley hyper-
determinant, and taking into account Lemma 4.6.16, it is readily verified that
Zw = ±DetKw.

4.7 Gradient Gibbs measures
In previous sections we introduced fixed boundary conditions and periodic boundary
conditions, which enabled us to study probability measures on finite subsets of Ω.
This section introduces shift-invariant gradient Gibbs measures, which prove to be
an effective tool for studying the large-scale behaviour of the model. While gradient
Gibbs measures are interesting in their own right, their main purpose here are their
use in the proof of strict convexity of the surface tension in Section 4.9.

4.7.1 Definition

Write f for the random function in Ω. Define for any R ⊂ Xd,

F := σ(f(x) : x ∈ Xd), FR := σ(f(x) : x ∈ R),

F∇ := σ(f(x)− f(y) : x,y ∈ Xd), F∇R := σ(f(x)− f(y) : x,y ∈ R).

Note that F∇R = F∇ ∩ FR is finite whenever R is finite because it is generated by
finitely many random variables, each taking finitely many values. Write P(Ω,X )
for the collection of probability measures on the measurable space (Ω,X ) for any
σ-algebra X on Ω. Probability measures in P(Ω,F∇) are called gradient measures.

A gradient measure µ ∈ P(Ω,F∇) is called shift-invariant whenever µ(θ̃A) = µ(A)
for any A ∈ F∇ and θ ∈ Θ, where θ̃A := {θ̃f : f ∈ A}. In other words, a
gradient measure µ is shift-invariant whenever ∇f and θ∇f have the same law
in µ for every θ ∈ Θ. The set of shift-invariant gradient measures is denoted by
PΘ(Ω,F∇). If µ ∈ PΘ(Ω,F∇), then it follows from shift-invariance that the map
µ(f(·)− f(0)) : Xd → R is additive over Xd. Therefore there exists a unique s ∈ H∗
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such that s(x) = µ(f(x)− f(0)) for every x ∈ Xd, and we must have s ∈ S because
s(gi) = µ(f(gi)− f(0)) ≤ 1 for every 1 ≤ i ≤ d+ 1. Write s(µ) for s, the slope of
µ ∈ PΘ(Ω,F∇).

Let (L, s) denote valid periodic boundary conditions and let µ denote the prob-
ability measure that is uniformly random in the finite set Ω(L, s). Lemma 4.3.10
implies that µ restricts to a shift-invariant gradient measure of slope s(µ) = s.

Let us now introduce the notion of a Gibbs measure. Fix a measure µ ∈ P(Ω,F).
The measure µ is called a Gibbs measure if for every finite R ⊂ Xd, the distribution of
f in µ is the same as the distribution of a sample f obtained by first sampling g from
µ, then sampling f from Ω(R, g) uniformly at random. The definition is formalised in
terms of specifications and the Dobrushin-Lanford-Ruelle (DLR) equations. For each
finite R ⊂ Xd, let γR denote the probability kernel from (Ω,FRc) to (Ω,F) such that
for any f ∈ Ω, the probability measure γR(·, f) is uniform in Ω(R, f). It is obvious
from the definition that Ω(R, f) is invariant under changing the values of f on R,
so that γR(A, ·) is indeed FRc-measurable for every A ∈ F . The kernels γR satisfy
the consistency condition; if S ⊂ R, then γRγS = γR. The collection of probability
kernels γR is called a specification, and a measure µ ∈ P(Ω,F) is called a Gibbs
measure if µ satisfies the DLR equation

µ = µγR (4.7.1)

for each finite R ⊂ Xd. This is equivalent to our previous, informal description. By
the consistency condition it is sufficient to check the DLR equations for an increasing
exhaustive sequence of finite subsets of Xd. Each kernel γR restricts to a kernel
from (Ω,F∇Rc) to (Ω,F∇). We shall write γ∇R for this restriction. A gradient measure
µ ∈ P(Ω,F∇) is called a gradient Gibbs measure if

µ = µγ∇R

for each finite subset R of Xd.

4.7.2 Existence and concentration

Theorem 4.7.2. For each slope s ∈ S, there is a shift-invariant gradient Gibbs
measure µ ∈ PΘ(Ω,F∇) of slope s such that, for any x,y ∈ Xd, we have the bounds

1. Varµ(f(y)− f(x)) ≤ (d+ 1)2n,

2. µ(f(y)− f(x)− s(y− x) ≥ (d+ 1)a) ≤ exp− a2

2n for all a ≥ 0 whenever n > 0,

3. µ(f(y)− f(x)− s(y− x) ≤ (d+ 1)a) ≤ exp− a2

2n for all a ≤ 0 whenever n > 0,

where n = d(Xd,Ed)(x,y).

The topology of local convergence or L-topology on P(Ω,X ) is the coarsest topology
that makes the evaluation map µ 7→ µ(A) continuous for every finite R ⊂ Xd and
for any A ∈ X ∩ FR. Constructing (gradient) Gibbs measures on P(Ω,X ) is much
easier whenever choosing X = F∇ and not X = F , because F∇R is finite for finite
R ⊂ Xd—see the following lemma.

Lemma 4.7.3. The set P(Ω,F∇) is compact in the topology of local convergence.
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Proof. The proof is entirely straightforward. Let (µn)n∈N denote a sequence of
measures in P(Ω,F∇) and let (Γm)m∈N denote an increasing exhaustive sequence
of finite subsets of Xd. Fix m ∈ N. The σ-algebra F∇Γm is finite and therefore there
exists a subsequence (kn)n∈N ⊂ N such that µkn converges on F∇Γm as n→∞. By a
standard diagonalisation argument we may assume that convergence occurs for all
m ∈ N. The limiting measure exists by the Kolmogorov extension theorem.

Proof of Theorem 4.7.2. Let s ∈ S be the slope of interest. Let (sn)n∈N be a sequence
of slopes converging to s with sn ∈ Sn for every n. Write µn for the uniform probability
measure on Ω(Ln, sn), for every n ∈ N. Each measure µn restricts to a shift-invariant
gradient measure in PΘ(Ω,F∇), and s(µn) = sn.

Now apply the previous lemma to obtain a subsequence (kn)n∈N along which the
sequence of gradient measures (µn)n∈N converges in the topology of local convergence,
say to µ ∈ P(Ω,F∇). The limit µ must be shift-invariant as all measures (µn)n∈N
are shift-invariant. At each vertex x ∈ Xd we have

µ(f(x)− f(0)) = lim
n→∞

µkn(f(x)− f(0)) = lim
n→∞

skn(x) = s(x),

which means that s(µ) = s. One shows similarly that (1)–(3) follow from Theo-
rem 4.3.12.

It suffices to prove that the gradient measure µ is a Gibbs measure, that is, that
µγ∇R = µ for every finite R ⊂ Xd. Fix a finite subset R ⊂ Xd. Now suppose that
µγ∇R equals µ on F∇S for any finite S ⊂ Xd. Then the two measures must be the
same, by the uniqueness statement of the Kolmogorov extension theorem. It thus
suffices to prove that µγ∇R equals µ on F∇S for any finite S ⊂ Xd. We may assume
that R ⊂ S and ∂R ⊂ S by expanding S if necessary. By using shift-invariance, we
may finally assume that 0 6∈ S.

We make the stronger claim that already in the non-gradient setting and before
taking limits, we have

µnγR|FS = µn|FS (4.7.4)

for n sufficiently large. The distribution µn is not invariant under resampling f on R.
However, if R+ x and R+ y are disjoint and not adjacent for any x,y ∈ Ln distinct,
then µn is invariant under resampling f on R, then translating this modification to
R+ x for each x ∈ Ln r {0}. Thus, if n is so large that S and R+ x are disjoint for
any x ∈ Ln r {0}, then (4.7.4) holds true because the additional modifications do
not affect the values of µn on the σ-algebra FS . This proves the claim.

For any n ∈ N, let Πn denote a centred box of sides 2n, that is,

Πn := {a1g1 + · · ·+ adgd : −n ≤ a1, . . . , ad < n} ⊂ Xd.

Note that |Πn| = (2n)d.

Proposition 4.7.5. Let µ denote a measure of Theorem 4.7.2 of slope s ∈ S. Then
µ-almost surely

lim
n→∞

1

n
‖(f − f(0))|Πn − s|Πn‖∞ = 0. (4.7.6)

This follows from a union bound and the inequalities in Theorem 4.7.2.

173



4.8 The surface tension and the variational principle
The purpose of this section is to give an overview of three closely related concepts
which describe the macroscopic behaviour of the model. These motivate the study of
strict convexity of the surface tension in Section 4.9. First, there is indeed the surface
tension, which describes the asymptotic number of height functions approximating
a certain slope. Second, there is the large deviations principle, which describes
the asymptotic number of height functions approximating an arbitrary continuous
profile. The rate function is the integral of the surface tension over the gradient of
the continuous profile of interest. Third, there is the variational principle, which is a
direct corollary of the large deviations principle, and describes the typical macroscopic
behaviour of the random height function. The surface tension is usually convex,
making that the rate function in the large deviations principle is also convex. In
the next section, we shall also prove that the surface tension is strictly convex,
which implies that the rate function has a unique minimiser, which in turn implies
concentration around a single continuous profile in the variational principle. For the
results in this section, we refer to [54] and [36].

4.8.1 The surface tension
Definition 4.8.1. Recall the definition of bfc for Lipschitz functions f : H → R on
Page 156. Recall also the definition of Πn ⊂ Xd at the end of the previous section
(Page 173). The surface tension is the function σ : S → R defined by

σ(s) := lim
n→∞

− 1

|Πn|
log |Ω(Πn, bsc)|.

For convergence of the limit in the definition of σ(s), we refer to Section 4 in [36].
The argument is effectively a supermultiplicativity argument: if A,B ⊂ Xd are finite
and disjoint with no vertex of A adjacent to a vertex of B, then |Ω(A ∪ B, f)| =
|Ω(A, f)| · |Ω(B, f)|, and if A ⊂ B, then |Ω(A, f)| ≤ |Ω(B, f)|. In fact, the definition
of σ(s) is stable under modifications of order o(n) to bsc as n→∞; see Lemma 4.5
in [36] for the following result.

Theorem 4.8.2. If s ∈ S, and if (fn)n∈N ⊂ Ω satisfies ‖fn|Πn − s|Πn‖∞ = o(n) as
n→∞, then

σ(s) = lim
n→∞

− 1

|Πn|
log |Ω(Πn, fn)|.

The previous result implies immediately that σ is continuous, see also Lemma 4.3
in [36].

Theorem 4.8.3. The surface tension σ : S → R is continuous.

4.8.2 The large deviations principle
Before stating the large deviations principle, we must introduce a suitable topological
space to work in, and we must specify how a sequence of fixed boundary conditions
converges to a continuous boundary profile. This is the purpose of the following
definition.

Definition 4.8.4. Write Lip(D) for the collection of real-valued Lipschitz functions
on D for any D ⊂ H. A domain is a bounded open set D ⊂ H such that ∂D has
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zero Lebesgue measure. A boundary profile is a pair (D, b) where D is a domain and
b ∈ Lip(∂D). An approximation of (D, b) is a sequence of pairs ((Dn, bn))n∈N such
that Dn ⊂ Xd is finite and bn ∈ Ω for any n ∈ N, and such that

1

n
Dn → D,

1

n
Graph bn|∂Dn → Graph b

in the Hausdorff topologies on H and H × R respectively as n→∞.
If (D, b) is a boundary profile with approximation ((Dn, bn))n∈N, then write

(γn)n∈N for the sequence of measures defined by γn := γDn(·, bn), the uniform prob-
ability measure in the finite set Ω(Dn, bn). The topological space for the large
deviations principle associated with this sequence is the set Lip(D̄) endowed with the
topology of uniform convergence—which is equivalent to the topology of pointwise
convergence as D̄ is compact. We must bring all samples from each measure γn to
the space Lip(D̄) for the large deviations principle to make sense. For each n ∈ N,
define the map Kn : Ω→ Lip(D̄) as follows. First, for each f ∈ Ω, define f̄ to be the
smallest Lipschitz extension of f to H. Define each map Kn by

Kn(f) : D̄ → R, x 7→ 1

n
f̄(nx).

Finally, let λ denote the unique translation-invariant measure on H for which

{a1g1 + · · ·+ adgd : a1, . . . , ad ∈ [0, 1]} ⊂ H

has measure one.

Theorem 4.8.5. Let (D, b) denote a boundary profile and ((Dn, bn))n∈N an ap-
proximation of (D, b) with associated measures γn := γDn(·, bn). Write γ∗n for the
pushforward of γn along Kn. Then the sequence of measures (γ∗n)n∈N satisfies a large
deviations principle in the topological space Lip(D̄) with speed nd and rate function

I(f) := −P (D, b) +

{∫
D σ(∇f)dλ if f |∂D = b,
∞ otherwise,

where P (D, b) is called the pressure of the boundary profile (D, b), defined to be the
unique constant such that the minimum of I is 0, and equal to

P (D, b) = lim
n→∞

− 1

nd
log |Ω(Dn, bn)|.

We shall continue using the definitions of I and P (D, b) in the sequel. The large
deviations principle was proven in a much more general setting by Sheffield in [54].
The large deviations principle with boundary conditions is stated in Subsection 7.3.2.
The large deviations principle in [54] does not only address the macroscopic profile
of each height functions but also its “local statistics” within macroscopic regions,
something we are not concerned with here. In [54] it is required that the boundary
profile is “not taut”. This requirement is however only necessary to understand the
local statistics, and may be omitted when one is interested in the macroscopic profile
only. For a more recent and elementary proof of the large deviations principle for the
macroscopic profile only, we refer to Theorem 2.17 in [36].
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4.8.3 The variational principle
The variational principle is a direct corollary of the large deviations principle. Note
that the set of minimisers of I in Theorem 4.8.5 is exactly the set of minimisers of∫

D
σ(∇f)dλ

over all functions f ∈ Lip(D̄) which restrict to b on ∂D.

Theorem 4.8.6. Assume the setting of Theorem 4.8.5. Let A denote an open
neighbourhood of {I = 0} ⊂ Lip(D̄). Then γ∗n(A)→ 1 as n →∞. In particular, if
σ is strictly convex, then I has a unique minimiser f∗ ∈ Lip(D̄), and in that case
γ∗n(A)→ 1 as n→∞ for any open neighbourhood A of f∗.

4.9 Strict convexity of the surface tension
In [5], the authors find an explicit formula for σ for the case d = 2 by appealing to
the integrable nature of the model. A direct corollary is that the surface tension is
strictly convex. In [54], Sheffield proves that the surface tension related to any simply
attractive model is strictly convex. In particular, this implies the following theorem.

Theorem 4.9.1. For any d ≥ 2, the surface tension is strictly convex on the interior
of S.

The proof of Sheffield relies crucially on cluster swapping. The purpose of the
section is to give an alternative proof of Theorem 4.9.1, which is simpler than the
proof in [54] due to the special nature of the cluster swap in the particular setting of
this thesis.

4.9.1 The specific entropy
First, we give an alternative characterisation of σ(s) in terms of the shift-invariant
gradient Gibbs measure of slope s whose existence is guaranteed by Theorem 4.7.2.
For this, we require the notions of entropy and specific entropy. Let (X,X ) be an
arbitrary measurable space endowed with a probability measure µ and a nonzero
finite measure ν. Then the relative entropy of µ with respect to ν, denoted H(µ, ν),
is defined by

H(µ, ν) :=

{
ν(h log h) = µ(log h) if µ� ν and h = dµ/dν,
∞ if µ 6� ν.

If A is a sub-σ-algebra of X , then write HA(µ, ν) for H(µ|A, ν|A). It is well-known
that µ minimises H(·, ν) over all probability measures if and only if µ is the normalised
version of ν, in which case H(µ, ν) = − log ν(X). Also, if ν is a counting measure,
then h ≤ 1, and in that case H(µ, ν) ≤ 0.

If R is a finite subset of Xd, then write DR : Ω→ ZR×R for the map satisfying

(DRf)(x,y) = f(y)− f(x)

for every f ∈ Ω, x,y ∈ R. Call DR the differences map. Note that ImDR is finite,
and that F∇R = σ(DR). Stronger: DR may be seen as a bijection from F∇R to the
powerset of ImDR. Write λR for the pullback of the counting measure on ImDR

along the map DR—λR is a measure on (Ω,F∇R ) of size λR(Ω) = | ImDR| ∈ Z>0.
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Remark 4.9.2. If R is connected and f ∈ Ω, then the values of DRf can be recovered
from the values of ∇f on the edges of Ed which are contained in R, by integrating
∇f along the appropriate paths through R. Thus, for connected sets R ⊂ Xd, one
should think of the map DR as an alternative for the map

f 7→ (∇f)|Ed∩(R×R)

in the above construction. This also implies that | ImDR| ≤ 2|R| whenever R is
connected.

Let µ ∈ P(Ω,F∇) and R ⊂ Xd finite. Then the entropy of µ in R, denoted
HR(µ), is defined by

HR(µ) := HF∇R (µ, λR) =
∑

x∈ImDR

µ(DRf = x) logµ(DRf = x) ∈ [− log | ImDR|, 0].

The specific entropy of µ, denoted H(µ), is defined to be the limit

H(µ) := lim
n→∞

1

|Πn|
HΠn(µ) = lim

n→∞

1

|Πn|
HF∇Πn (µ, λΠn)

whenever the sequence is convergent. Otherwise simply replace the limit by the limit
inferior to obtain a well-defined limit. It can in fact be shown that the sequence is
always convergent, see for example [54, Chapter 2], but we shall not rely on this fact.

Theorem 4.9.3. Let µ denote a measure of Theorem 4.7.2 of slope s ∈ S. Then
H(µ) = σ(s).

Proof. Let µ denote any gradient Gibbs measure for now. Write hR for the Radon-
Nikodym derivative

hR :=
dµ|F∇R
dλR

for any finite R ⊂ Xd. Fix R,S ⊂ Xd finite with S ∪ ∂S ⊂ R. As µ is Gibbs, we
know that µ is uniformly random in Ω(S, f) whenever µ is conditioned on the values
of f on Sc. This implies immediately that

hR =
1

|Ω(S, f)|
hRrS .

The function |Ω(S, ·)| is F∇∂S-measurable as the model is Markov, and consequently
hR is F∇RrS-measurable.

Let now µ be a measure of Theorem 4.7.2 of slope s ∈ S, and pick n ∈ N. Then

(2n)−dHΠn(µ) = (2n)−dµ(log hΠn) = (2n)−dµ(log hΠnrΠn−1 − log |Ω(Πn−1, f)|)
= (2n)−dHΠnrΠn−1(µ) + µ(−(2n)−d log |Ω(Πn−1, f)|). (4.9.4)

The first term in (4.9.4) vanishes as n → ∞ because Πn r Πn−1 is connected as a
subset of (Xd, Ed):

|HΠnrΠn−1(µ)| ≤ log | ImDΠnrΠn−1 | ≤ |Πn r Πn−1| log 2 = O(nd−1).

The term within the expectation in (4.9.4) converges to σ(s) pointwise by Proposi-
tion 4.7.5 and Theorem 4.8.2. We may apply the dominated convergence theorem
because the expression within the expectation is always absolutely bounded by log 2,
since 0 ≤ log |Ω(Πn−1, f)| ≤ |Πn−1| log 2 ≤ (2n)d log 2.
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Before proceeding, let us quote an important result from the literature.

Theorem 4.9.5. Let µ ∈ PΘ(Ω,F∇) denote a measure which satisfies the concentra-
tion of (4.7.6) for some s ∈ S, but which is not a Gibbs measure. Then H(µ) > σ(s).

Proof overview. Write µn,g for the measure µ conditioned on f(x) = g(x) for all
x ∈ Πn r Πn−1. Then

HΠn(µ) = HΠnrΠn−1(µ) +

∫
HΠn(µn,g)dµ(g).

This is the same decomposition as in the proof of the previous theorem. For fixed g,
the integrand in this display is clearly minimised if µ is a Gibbs measure, because
µn,g is then uniformly random in all extensions of g|ΠnrΠn−1 to Πn. This proves that
H(µ) ≥ σ(s) whenever µ is concentrated as in (4.7.6); the difficulty is in proving the
strict inequality whenever µ is not Gibbs. If µ is not Gibbs, then the integral in the
display will for some n be strictly larger than if µ were Gibbs, but it is nontrivial to
demonstrate that this difference survives the normalisation by |Πn| in the definition
of H(µ). This follows from a standard superadditivity argument, see Lemma 2.4.1
in Chapter 2 or Theorem 15.37 in [20]. See Theorem 2.5.2 in [54] for a proof of the
current theorem in full detail.

4.9.2 The product setting

For the double dimer model, the cluster swap, and the level set decomposition
developed in this thesis, it is essential to work in the product setting. We shall
introduce some straightforward technical machinery before proceeding; essentially
we must adapt the constructions and results from Section 4.7 and from the previous
subsection to the product setting. Write

F2∇ := F∇ ×F∇, γ2
R := γR × γR, λR2 := λR × λR,

F2∇
R := F∇R ×F∇R , γ2∇

R := γ∇R × γ∇R .

Let P(Ω2,F2∇) denote the collection of probability measures on (Ω2,F2∇); such
measures are called double gradient measures. If µ ∈ P(Ω2,F2∇) then we shall by
default write (f1, f2) for the pair of random height functions, and g := f1− f2 for the
random difference. Write PΘ(Ω2,F2∇) for the collection of shift-invariant measures
µ ∈ P(Ω2,F2∇); the measure µ is called shift-invariant if µ(θ̃A× θ̃B) = µ(A× B)
for every θ ∈ Θ and A,B ∈ F∇. This is equivalent to requiring that (∇f1,∇f2) and
(θ∇f1, θ∇f2) have the same law in µ for each shift θ ∈ Θ.

The kernel γ2
R = γR× γR is simply the kernel from (Ω2,F2

Rc) to (Ω2,F2) with the
property that the probability measure (γR×γR)(·, (f1, f2)) is uniformly random in the
set Ω(R, f1)× Ω(R, f2), and it restricts naturally to the kernel γ2∇

R = γ∇R × γ∇R—this
is a probability kernel from (Ω2,F2∇

Rc ) to (Ω2,F2∇). A double gradient measure µ
is called a double gradient Gibbs measure if it satisfies, for every finite R ⊂ Xd, the
DLR equation

µ = µγ2∇
R .

If µ is the product of two gradient Gibbs measures µ1 and µ2, then µ is also Gibbs as

µ = µ1 × µ2 = (µ1γ
∇
R )× (µ2γ

∇
R ) = (µ1 × µ2)(γ∇R × γ∇R ) = µγ2∇

R .
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Now let µ ∈ P(Ω2,F2∇) and R ⊂ Xd finite. The entropy of µ in R, denoted
H2
R(µ), is defined by

H2
R(µ) := HF2∇

R
(µ, λR2 ).

The specific entropy of µ, denoted H2(µ), is defined to be the limit

H2(µ) := lim
n→∞

1

|Πn|
H2

Πn(µ) = lim
n→∞

1

|Πn|
HF2∇

Πn
(µ, λΠn

2 )

whenever the limit is convergent, and the limit inferior otherwise.
The direct generalisation of Theorems 4.9.3 and 4.9.5 to the product setting reads

as follows.

Theorem 4.9.6. Let µ ∈ PΘ(Ω2,F2∇) denote a shift-invariant product measure such
that

lim
n→∞

1

n
‖(fi − fi(0))|Πn − si|Πn‖∞ = 0 (4.9.7)

almost surely for i ∈ {1, 2} and for some fixed slopes s1, s2 ∈ S. Then H2(µ) ≥
σ(s1) + σ(s2), with equality if and only if µ is a Gibbs measure.

4.9.3 Proof overview
Fix throughout this section two distinct Lipschitz slopes s1, s2 ∈ S such that their
average sa := (s1 + s2)/2 lies in the interior of S. The ultimate goal of this section is
to prove that 2σ(sa) < σ(s1) + σ(s2), which implies Theorem 4.9.1: that σ is strictly
convex on the interior of S.

In the remainder of this section, let µi denote the shift-invariant gradient Gibbs
measure of Theorem 4.7.2 of slope si for each i ∈ {1, 2}, and fix µ := µ1×µ2. Then µ
is a shift-invariant double gradient Gibbs measure. Moreover, µ has the concentration
of (4.9.7), and therefore Theorem 4.9.6 implies that H2(µ) = σ(s1) + σ(s2).

The sets T (f1) and T (f2), the graph Gg = (Vg, Eg), the g-level sets, the g-
boundaries, and the directed graph (LSD(g),∇g) are all invariant under adding
constants to f1 and f2, as each of them is characterised entirely by the gradients
∇f1, ∇f2, and ∇g := ∇f1 −∇f2. The gradient ∇g also determines X±g (E) for any
g-boundary E.

Lemma 4.9.8. It is µ-almost certain that LSD(g) contains a subgraph that is graph
isomorphic to Z. Moreover, every g-level set and every g-boundary involved in such a
subgraph of LSD(g) is unbounded.

This lemma is essential in understanding the geometry of LSD(g). It is expected
that the difference function g = f1 − f2 of a typical sample from µ looks somewhat
like the leftmost subfigure of Figure 4.4.

Proof of Lemma 4.9.8. As sg := s1 − s2 6= 0, there exists an index 1 ≤ i ≤ d + 1
such that sg(gi) 6= 0. Fix such an i, and write p for the Z-indexed path p :=
(pk)k∈Z := (kgi)k∈Z through (Xd, Ed). Write qk for the g-level set containing pk for
each k ∈ Z. For each k ∈ Z the vertices pk and pk+1 are either contained in the same
g-level set, or in two distinct neighbouring g-level sets. We consider q := (qk)k∈Z a
walk through LSD(g) although q is not a walk in the strict sense: it may visit the
same g-level set multiple times in a row. Proposition 4.7.5 says that µ-almost surely
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µ = µ1 × µ2 µ̂

Πn

µ̂γ2∇
Πm

Πn

Πm

Figure 4.4: Difference samples from different measures; Πm is a trifurcation box.

g(pk)− g(p0) = ksg(gi) + o(k) as k →∞ or k → −∞. This implies that there is a
well-defined and unique loop-erased bi-infinite version of the path q up to indexation,
which is the desired Z-isomorphic subgraph of LSD(g). This proves the first part of
the lemma.

Focus on the second statement, which is deterministic in nature. Fix a g-boundary
E ⊂ Ed that is an edge of a subgraph of LSD(g) that is isomorphic Z. Then
removing E from LSD(g) disconnects LSD(g) and separates the graph into two
infinite components. In particular, this implies that the graph (Xd, Ed r E) consists
of two infinite connected components. If E were finite, then one of the two connected
components of (Xd, Ed r E) had to be finite, and therefore we conclude that E is
infinite. The g-boundary E connects the two g-level sets X−g (E) and X+

g (E) when
considered an LSD(g)-edge, and these must also be infinite as one of them contains
the infinite set x−g (E) and the other x+

g (E). This proves the second statement of the
lemma.

We now give an overview of the remainder of the proof. The key idea is to
construct a new shift-invariant double gradient measure µ̂ ∈ PΘ(Ω2,F2∇). Write
f̂1, f̂2 and ĝ := f̂1 − f̂2 for the random functions in µ̂. To sample from µ̂, first draw
a pair (f1, f2) from the original measure µ = µ1 × µ2. Then obtain (f̂1, f̂2) from
(f1, f2) by flipping a fair coin for every g-boundary in order to determine whether or
not to reverse the orientation of that g-boundary. In other words, we rerandomise
the orientation of each g-boundary. In the measure µ̂, the orientations of the edges
in the graph (LSD(ĝ),∇ĝ) are thus uniformly random and independent of all other
structure that is present. First, we show that the resampling operation does not
affect the specific entropy, that is,

H2(µ̂) = H2(µ) = σ(s1) + σ(s2).

Second, we prove that for i ∈ {1, 2} we µ̂-almost surely have

lim
n→∞

1

n
‖(f̂i − f̂i(0))|Πn − sa|Πn‖∞ = 0. (4.9.9)

Note that the concentration of the gradient of either function is around the average
slope sa. Third, we prove that µ̂ is not Gibbs. Theorem 4.9.6 therefore implies that
H2(µ̂) > 2σ(sa), the desired result.
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Let us elaborate on the third step, before proceeding. Suppose that µ̂ is Gibbs,
in order to derive a contradiction. A trifurcation box of ĝ is a finite subset of Xd of
the form R = θΠn such that, for some infinite ĝ-level set X ⊂ Xd, removing R from
X means breaking X into at least three infinite components. We show that ĝ has
a trifurcation box with positive probability in the measure µ̂γ2∇

Πm
for m sufficiently

large: see the middle and rightmost subfigures in Figure 4.4. If µ̂ were Gibbs then
µ̂ = µ̂γ2∇

Πm
, and therefore a sample ĝ from µ̂ has a trifurcation box with positive

probability. Trifurcation boxes do almost surely not occur in shift-invariant measures,
by a simple geometrical argument described by Burton and Keane in their celebrated
paper [4]. This proves that µ̂ is not Gibbs.

4.9.4 Detailed proof
Lemma 4.9.10. The specific entropy of µ̂ equals the specific entropy of µ.

Proof. We prove the stronger statement that H2
Πn

(µ̂) = H2
Πn

(µ)+O(nd−1) as n→∞.
Fix n ∈ N large. The measure µ is Gibbs and therefore satisfies the DLR equation

µ = µγ2∇
Πn .

This implies in particular that the distribution of a sample (f1, f2) from µ is invariant
under subsequently rerandomising the orientation of each g-boundary that is contained
in Ed(Πn). As this is true for all n, we derive that the distribution of the sample
is in fact invariant under rerandomising the orientation of any finite g-boundary.
Thus, to sample (f̂1, f̂2) from µ̂, one may first sample a pair (f1, f2) from µ, then
rerandomise the orientation of only the g-boundaries which are infinite. Write µ̃
for the corresponding coupling of µ and µ̂, and write (f1, f2, f̂1, f̂2) for the random
4-tuple in µ̃.

Write H2
A,B(µ̃) for HF2∇

A ×F
2∇
B

(µ̃, λA2 × λB2 ) for A,B ⊂ Xd finite and claim that

1. H2
Πn

(µ) = H2
Πn,ΠnrΠn−1

(µ̃) +O(nd−1),

2. H2
Πn

(µ̂) = H2
ΠnrΠn−1,Πn

(µ̃) +O(nd−1),

3. H2
Πn,ΠnrΠn−1

(µ̃) = H2
Πn,Πn

(µ̃) = H2
ΠnrΠn−1,Πn

(µ̃).

It is clear that these three claims jointly imply the lemma.
Focus on the first claim, and consider thus the measures

µ|F2∇
Πn
, µ̃|F2∇

Πn
×F2∇

ΠnrΠn−1

.

The first claim is intuitive: the restriction of µ records the values of DΠn(f1) and
DΠn(f2), and the restriction of µ̃ records also the values of DΠnrΠn−1(f̂1) and
DΠnrΠn−1(f̂2). Informally, the extra information that the restriction of µ̃ records
is of order nd−1, because log | ImDΠnrΠn−1 |2 = O(nd−1). We now formalise this
idea. For x ∈ (ImDΠn)2, we write µ̂x for the measure µ̃ conditioned on the event
{(DΠnf1, DΠnf2) = x} and projected onto the product of the third and fourth
component of the product measurable space (Ω,F∇)4. Then a standard entropy
calculation implies that

H2
Πn,ΠnrΠn−1

(µ̃) = H2
Πn(µ) +

∫
H2

ΠnrΠn−1
(µ̂x)dµ((DΠnf1, DΠnf2) = x),
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see Theorems D.3 and D.13 of [11] or Lemma 2.1.3 of [54]. As in the proof of
Theorem 4.9.3, we have

|H2
ΠnrΠn−1

(µ̂x)| ≤ log | ImDΠnrΠn−1 |2 = O(nd−1).

This proves the first claim. The second claim follows by identical reasoning.
Focus on the third claim, in particular on the equality on the left—the equality on

the right shall follow by the same arguments. For the equality on the left it suffices
to demonstrate that, with µ̃-probability one, the tuple

(DΠnf1, DΠnf2, DΠn f̂1, DΠn f̂2) (4.9.11)

can be reconstructed almost surely from

(DΠnf1, DΠnf2, DΠnrΠn−1 f̂1, DΠnrΠn−1 f̂2). (4.9.12)

We know that (f1, f2) and (f̂1, f̂2) differ by cluster boundary swaps, where all
boundaries which are swapped, are infinite. To recover (4.9.11) from (4.9.12), we
must therefore understand whether or not each infinite boundary which intersects
Πn−1, should be swapped or not. However, as each such boundary is infinite, it
must intersect Πn r Πn−1, and its orientation for (f̂1, f̂2) can therefore be read off
from (4.9.12).

Lemma 4.9.13. Equation 4.9.9 holds true µ̂-almost surely for i ∈ {1, 2}.

Proof. It suffices to prove that µ̂-almost surely

lim
n→∞

1

n
‖(f̂1 − f̂1(0))|Πn + (f̂2 − f̂2(0))|Πn − 2sa|Πn‖∞ = 0, (4.9.14)

lim
n→∞

1

n
‖(f̂1 − f̂1(0))|Πn − (f̂2 − f̂2(0))|Πn‖∞ = 0. (4.9.15)

First focus on (4.9.14). Recall the definition of µ; Proposition 4.7.5 implies that
almost surely

lim
n→∞

1

n
‖(f1 − f1(0))|Πn + (f2 − f2(0))|Πn − (s1 + s2)|Πn‖∞ = 0.

Recall that the sum of two height functions is invariant under a cluster boundary swap,
and that 2sa = s1 + s2. The previous display therefore implies (4.9.14). For (4.9.15)
we must show that µ̂-almost surely

lim
n→∞

1

n
‖(ĝ − ĝ(0))|Πn‖∞ = 0 (4.9.16)

Fix some x ∈ Xd; we are interested in the distribution of ĝ(x) − ĝ(0). The distri-
bution of ĝ(x) − ĝ(0) conditional on LSD(ĝ) is given by summing dLSD(ĝ)(0,x) ≤
d(Xd,Ed)(0,x) fair coins each valued ±(d + 1). This follows immediately from the
definition of the measure µ̂. Application of the Azuma-Hoeffding inequality yields,
for a ≥ 0 and x 6= 0,

µ̂(|ĝ(x)− ĝ(0)| ≥ (d+ 1)a) ≤ 2 exp− a2

2d(Xd,Ed)(0,x)
.

A union bound now implies (4.9.16).
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Lemma 4.9.17. The double gradient measure µ̂ is not Gibbs.

Proof. Define the F2∇-measurable event

I(n) :=

{
ĝ takes the same value on three distinct infinite ĝ-level
sets that all intersect Πn, one of which contains 0

}
⊂ Ω2,

and claim that µ̂(I(n)) > 0 for n ∈ N sufficiently large. First, a cluster boundary
swap leaves LSD(g) invariant, and therefore Lemma 4.9.8 holds true for g replaced
with ĝ and µ with µ̂. Therefore it is µ̂-almost certain that LSD(ĝ) contains a Z-
indexed self-avoiding walk p = (pk)k∈Z. Let p be chosen deterministically in terms
of LSD(ĝ), so that (ĝ(pk+1)− ĝ(pk))k∈Z is a sequence of i.i.d. random variables each
distributed uniformly in ±(d+ 1), independent of LSD(ĝ). In particular, the event
{ĝ(pk±2)− ĝ(pk) = 0} has probability 1

4 for each fixed k. As µ̂ is shift-invariant, we
may choose p such that µ̂(0 ∈ p0) > 0. Choose n ∈ N sufficiently large such that,
conditional on {0 ∈ p0}, the set Πn intersects p±2 with positive probability. Note
that ĝ(p±2)− ĝ(p0) = 0 with probability 1

4 independently of the occurrence of both
previous events, and therefore the original event I(n) has positive probability. This
is the claim. Fix n ∈ N such that ε := 1

2 µ̂(I(n)) > 0. See the middle display in
Figure 4.4 for the level set decomposition of the difference function ĝ corresponding
to a sample from the event I(n).

If h and h′ are real-valued functions defined on two disjoint subsets A and A′ of
Xd respectively, then write hh′ for the unique function on A ∪A′ which equals h on
A and h′ on A′. Next, define for m ≥ n the F2∇-measurable event

L(m) :={
the function (f̂1 − f̂1(0))|Πn(f̂2 − f̂2(0))|Πc

m
extends to a height function

}
=
{
the function (f̂1 − f̂1(0))|Πn(f̂2 − f̂2(0))|Πc

m
is Lipschitz

}
⊂ Ω2,

and claim that µ̂(L(m))→ 1 as m→∞. Recall that (4.9.9) holds true for i = 2 with
µ̂-probability one. Therefore it suffices to show that the function

(f̂1 − f̂1(0))|Πn(f̂2 − f̂2(0))|Πc
m

is Lipschitz for m sufficiently large whenever f̂2 satisfies (4.9.9). To see this, write
h±m for the largest and smallest functions in Ω(Πm, f̂2 − f̂2(0)) respectively. In other
words, the functions h±m are the largest and smallest extensions of (f̂2 − f̂2(0))|Πc

m

to Xd which are height functions. Note that there exist constants α± > 0 such that
h±m(0) = ±α±m+ o(m) as m→∞ due to (4.9.9) and because sa is in the interior
of the set of Lipschitz slopes. In particular,

h+
m|Πn ≥ (f̂1 − f̂1(0))|Πn , h−m|Πn ≤ (f̂1 − f̂1(0))|Πn

for m sufficiently large. This proves the claim. Fix m so large that µ̂(L(m)) ≥ 1− ε,
which implies that µ̂(I(n) ∩ L(m)) ≥ ε > 0.

Define for x ∈ Xd the F2∇-measurable event

T (x) :=

{
(Xd, Edr (Vĝ ∪Ed(Πm +x))) has three infinite connected
components that are contained in a single ĝ-level set

}

=

 (Xd, Edr (Vĝ ∪Ed(Πm +x))) has three infinite connected
components that are contained in one connected compo-
nent of (Xd, Ed r Vĝ)

 ⊂ Ω2;

183



we shall first focus on T := T (0). See the rightmost subfigure in Figure 4.4 for the
level set decomposition of the difference function ĝ corresponding to a sample from T .
We claim that Ω(Πm, f1)× Ω(Πm, f2) intersects T whenever (f1, f2) ∈ I(n) ∩ L(m).
Fix such a pair (f1, f2) and assume, without loss of generality, that f1(0) = f2(0) = 0.
Assert first that there exists a height function f ′′ which equals f1 on Πn and which
equals f2 on Πc

m, and which at any vertex x takes values between f1(x) and f2(x).
The following construction works: write first f ′ for a height function which extends
f1|Πnf2|Πc

m
to Xd, then define f ′′ by

f ′′ := (f ′ ∨ (f1 ∧ f2)) ∧ (f1 ∨ f2).

This proves the assertion. Now f ′′ ∈ Ω(Πm, f2) as f ′′ equals f2 on Πc
m. Moreover,

as at each vertex the value of f ′′ is in between the values of f1 and f2, we have
{f1 = f2} ⊂ {f1 = f ′′} ⊂ Xd, and we also know that Πn ⊂ {f1 = f ′′}. This implies
that (f1, f

′′) ∈ T , since the three connected components of {f1 = f2} are contained
in a single connected component of {f1 = f ′′}, and because {f1 = f2}r Πm = {f1 =
f ′′}r Πm, that is, removing Πm disconnects these three components again.

Suppose that µ̂ is a Gibbs measure, in order to derive a contradiction. Then the
event T must occur with positive probability for µ̂, since µ̂(I(n) ∩ L(m)) > 0, and
since T has positive probability for

γ2∇
Πm(·, (f̂1, f̂2))

whenever (f̂1, f̂2) ∈ I(n)∩L(m). The argument of Burton and Keane [4] dictates that
trifurcation boxes do almost surely not occur in shift-invariant probability measures.
In other words, µ̂(T ) = 0. This is the desired contradiction. To see that µ̂(T ) = 0,
observe that µ̂(T (x)) is independent of x, implying that trifurcation boxes must
occur with positive density whenever µ̂(T ) > 0. This is impossible due to geometrical
constraints of the amenable graph (Xd, Ed).

This establishes Theorem 4.9.1.
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